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SUMMARY
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we per-
formed comprehensive proteogenomic characterization of 110 tumors and 101matched normal adjacent tis-
sues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetyl-
proteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and
gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberra-
tions, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events
involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the associa-
tion of STK11with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil
degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signa-
tures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins
with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public
resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
INTRODUCTION

Lung cancers are the leading cause of cancer deaths in the

United States (Siegel et al., 2019) and worldwide (Bray et al.,
200 Cell 182, 200–225, July 9, 2020 ª 2020 Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://
2018). Despite therapeutic advances including tyrosine kinase

inhibitors and immunotherapy, sustained responses are rare

and prognosis remains poor (Herbst et al., 2018), with a 19%

overall 5-year survival rate in the United States (Bray et al.,
creativecommons.org/licenses/by-nc-nd/4.0/).
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2018) and a worldwide ratio of lung cancer mortality-to-inci-

dence of 0.87. Adenocarcinoma (LUAD), the most common

lung malignancy, is strongly related to tobacco smoking but

also the subtype most frequently found in individuals who have

reported no history of smoking (‘‘never-smokers’’) (Subramanian

and Govindan, 2007; Sun et al., 2007). The genetics and natural

history of LUAD are strongly influenced by smoking status,

gender, and ethnicity, among other variables (Chapman et al.,

2016; Okazaki et al., 2016; Subramanian and Govindan, 2007;

Sun et al., 2007). However, contemporary large-scale

sequencing efforts have typically been based on cohorts of

smokers with limited ethnic diversity. Among the major

sequencing studies that have helped elucidate the genomic

landscape of LUAD (Clinical Lung Cancer Genome Project

(CLCGP) and Network Genomic Medicine (NGM), 2013; Ding

et al., 2008; Imielinski et al., 2012), only The Cancer Genome

Atlas (TCGA) measured a small subset of proteins and phospho-

peptides, restricted to a 160-protein reversed phase array (Can-

cer Genome Atlas Research Network, 2014). As the most

frequent genomic aberrations in LUAD involve RAS/RAF/RTK

pathway genes that lead to cellular transformation mainly by

inducing proteomic and phosphoproteomic alterations (Cully

and Downward, 2008), global proteogenomic profiling is needed

to provide deeper mechanistic insights. Furthermore, although

prior molecular characterization has identified a number of onco-

logic dependencies and facilitated the development of effective

inhibitors for LUAD driven by EGFRmutation (Lynch et al., 2004;

Paez et al., 2004) andALK (Kwak et al., 2010),ROS1 (Shaw et al.,

2014), andRET fusions (Gautschi et al., 2017; Kohno et al., 2012;

Takeuchi et al., 2012), a substantial proportion of LUADs still lack

known or currently targetable mutations.

To further our understanding of LUAD pathobiology and po-

tential therapeutic vulnerabilities, the National Cancer Institute

(NCI)’s Clinical Proteomic Tumor Analysis Consortium (CPTAC)

undertook comprehensive genomic, deep-scale proteomic,

and post-translational modifications (PTM) analyses of paired

(patient-matched) LUAD tumors and normal adjacent tissues

(NATs). Our integrative proteogenomic analyses focused partic-

ularly on novel and clinically actionable insights revealed in the
proteome and PTMs. The underlying data represent an ex-

ceptional resource for further biological, diagnostic, and drug

discovery efforts. Another large-, deep-scale proteogenomics

study of lung adenocarcinoma in the Taiwanese population ap-

pears in this issue (Chen et al., 2020).

RESULTS

Proteogenomic Landscape and Molecular Subtypes
of LUAD
We investigated the proteogenomic landscape of 110 treatment-

naive LUAD tumors and 101 paired NATs, prospectively collected

under strict protocols limiting ischemic time. The samples repre-

sented diverse demographic and clinical characteristics including

country of origin and smoking status (Figure 1A; Table S1). After

confirmation of LUAD histopathology by multiple expert patholo-

gists, aliquots of cryopulverized tissue were profiled by whole-

exome sequencing (WES, nominal 150x coverage), whole-

genome sequencing (WGS, nominal 15x coverage), RNA

sequencing (RNA-seq), microRNA sequencing (miRNA-seq),

array-based DNA methylation analysis, and in-depth proteomic,

phosphoproteomic, and acetylproteomic characterization (Fig-

ures 1B and S1A; Tables S2 and S3), with complete data for 101

tumors and 96NATs. Tandemmass tags (TMT)-based isobaric la-

beling was used for precise relative quantification of proteins,

phosphosites, and acetylsites. Excellent reproducibility and data

quality were maintained across the entire dataset (Figures S1C–

S1F). Appropriate filtering resulted in a comprehensive, deepscale

proteogenomic dataset allowing extensive integrative analysis

(Figure 1C; Tables S2 and S3). The general landscape of somatic

alterations, focal amplifications, and deletions in this study was

consistent with prior large-scale profiling efforts including TCGA

(Campbell et al., 2016; Cancer Genome Atlas Research Network,

2014; Weir et al., 2007), although with a different distribution likely

due to the greater demographic diversity and larger proportion of

self-reported never-smokers in the current study (Figure 1D).

To investigate the intrinsic structure of the proteogenomics

data, non-negative matrix factorization (NMF)-based unsuper-

vised clustering was performed on RNA, protein, phosphosites,
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and acetylsites, collectively as ‘‘multi-omics clustering’’ and indi-

vidually (except RNA) (Figures 1E and S1G–S1I). The four stable

clusters (C1–4) (Figure 1E) overlapped with previously character-

ized mRNA-based proximal-inflammatory, proximal-proliferative,

and terminal respiratory unit clusters (Cancer Genome Atlas

Research Network, 2014; Wilkerson et al., 2012) but subdivided

the second of these into two distinct clusters. The core samples

of the clusters were significantly associated with distinctive clin-

ical and molecular features (p value < 0.01; Figure 1F; Table S1).

Cluster 1 (C1), aligned with proximal-inflammatory, was enriched

for TP53mutants, STK11 wild type (WT), and CpG island methyl-

ator phenotype (CIMP)-high status; C2, a proximal-proliferative

subcluster, was distinguished by Western patients (especially

from the United States), TP53 and EGFRWT status, and interme-

diate CIMP status; C3, the dominant proximal-proliferative clus-

ter, was enriched for Vietnamese patients and STK11 mutation

(including two structural events identified from WGS; Table S1);

and C4, aligned with terminal respiratory unit, was enriched for

EGFR mutations, female sex and Chinese nationality, and was

essentially devoid of KRAS or STK11mutations. Most of the sam-

ples harboring EML4-ALK fusions were assigned to C4 and

lacked mutations in other key driver genes, consistent with a pri-

mary role for EML4-ALK in LUAD tumorigenesis (Gao et al., 2018).

Of note, NMF clustering based on sample purity-adjusted protein

data matrices led to similar clusters compared to the unadjusted

data. AlthoughNMFclusters had distinctive biology, linearmodels

did not identify biologically coherent sets of differential markers

between sexes, tumor stages, or histological subtypes oncemajor

covariates were accounted for (Table S3).

To further explore the biology associated with the multi-omics

taxonomy, we performed over-representation pathway analysis

(Zhang et al., 2016) using differentially regulated genes, proteins,

and post-translational modifications (PTMs) in each of the clus-

ters (Figure 1E; Table S3). C1/proximal-inflammatory samples

were primarily associated with immune signaling across multiple

data types. The C2 subset of the proximal-proliferative subtype

demonstrated signaling by Rho GTPases, as well as signatures

of hemostasis and platelet activation, signaling, and degranula-

tion, suggestive of systematic disturbances in coagulation ho-

meostasis. The dominant proximal-proliferative subtype in C3

had a distinctive histone deacetylase signature but also an upre-
Figure 1. Genomic and Proteomic Landscape of Lung Adenocarcinom

(A) Pie charts of key demographic and histologic features, along with self-reported

in this study.

(B) Patient-centric circos plot representing the multi-platform data generated in th

right indicate samples in each of the categories.

(C) Summary of data and metadata generated in this study.

(D) Oncoplot generated with maftools depicting mutually exclusive driver oncog

receptor tyrosine kinase gene fusions in the CPTAC LUAD cohort along with their

mutations in tumor suppressor genes (NF1, KEAP1, STK11, and TP53) are also d

0.01 are indicated in red. Percentages of transitions/transversions noted in each

(E) Integrative classification of tumor samples into four NMF-derived clusters (mu

by cluster membership scores, decreasing from left to right. ‘‘RNA expression sub

subtypes (TCGA LUAD analysis). The heatmap shows the top 50 differential mRNA

omics cluster, annotated for representative pathways.

(F) Pie charts show sample distribution of metadata terms that are significantly ove

‘‘core’’ cluster members (membership score > 0.5) that define each cluster.

See also Figure S1 and Tables S1, S2, and S3.
gulation of cell cycle pathways. Finally, the terminal respiratory

unit subtype in C4 was distinguished by surfactant metabolism,

MAPK1/MAPK3 signaling, MECP2 regulation, and chromatin or-

ganization in the acetylproteome. Notably, C1, characterized by

increased expression of immune system-related genes,

included samples with high non-synonymous mutation burden

and CIMP-high status. Altogether, the pathway enrichment anal-

ysis highlights intrinsic differences in both oncogenic signaling

and host response across LUAD subtypes.

To explore the pattern of miRNA expression in LUAD, we

performed unsupervised Louvain clustering of 107 tumor sam-

ples with available miRNA data based on expression of mature

miRNAs. Five subgroups of LUAD patients were identified by

their distinctive miRNA expression profiles (Figure S1J; Table

S3). Two of the miRNA clusters were markedly enriched for tu-

mors from C1/proximal-inflammatory and C3/proximal-prolifer-

ative multi-omics clusters, whereas the remaining three miRNA

clusters had mixed composition. One miRNA cluster included

all five EML4-ALK as well as the HMBOX1-ALK fusion tumors

and featured high expression of miR-494, miR-495, and miR-

496, the first two previously implicated in non-small cell lung

cancer (NSCLC) (Romano et al., 2012; Chen et al., 2017). The

vast majority of patients with STK11 mutations were catego-

rized into another subgroup in which well-documented can-

cer-associated miRNAs such as miR-106b-5p, miR-20a-5p,

and miR-17-5p were highly expressed (Lu et al., 2017; Shi

et al., 2018).

The relationships between epigenetic and genomic events

and downstream expression of RNA, proteins, and PTMs were

explored in detail. Cross-referencing gene fusions in the cohort

with a curated kinase fusion database (Gao et al., 2018) allowed

identification of all rearrangements involving kinases (Figure 2A).

Although fusions involving ALK, ROS1, RET, and PTK2 genes

were most recurrent, several novel, potentially oncogenic kinase

fusions were also discovered. Generally, such oncogenic ki-

nases contained in-frame fusions, whereas kinases with a tumor

suppressive role (such as STK11, STK4, ATM, FRK, and EPHA1)

exhibited disruptive out-of-frame events (Figure 2A). Several ki-

nase fusions showed commensurate differential RNA, protein,

and phosphosite expression of the index cases (Figure 2B). Be-

sides ALK, instances of ROS1, RET, PRKDC, and PDGFRA
a

smoking status of lung adenocarcinoma (LUAD) patient samples characterized

is study. White gaps in the schematic represent missing data. Numbers to the

ene somatic mutations in KRAS, EGFR, other RAS/RAF pathway genes, and

frequencies. Rows represent genes, and columns represent samples. Somatic

epicted. The significantly mutated genes with Benjamini Hochberg (BH) FDR <

sample are depicted in the bar plots.

lti-omics cluster 1 [C1] to cluster 4 [C4]). Within each cluster, tumors are sorted

type’’ shows classification by previously published RNA-seq-based expression

transcripts, proteins, phosphoproteins, and acetylated proteins for eachmulti-

rrepresented (p value < 0.01, Fisher’s exact test) within themost representative

Cell 182, 200–225, July 9, 2020 203
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overexpression were found in tumors but not in paired NAT sam-

ples. Investigation of the fusion architecture of the highly recur-

rent in-frame ALK gene fusions (n = 7) identified multiple 50 part-
ners including the well-established EML4 as well as novel

HMBOX1 and ANKRD36B genes (Figure S2A). WGS data pro-

vided precise genomic breakpoints in the intron proximal to

exon-20 (e20) underlying ALK rearrangements in five cases (Fig-

ure S2B). AllALK gene fusion cases showed outlier expression of

ALK mRNA, and all in which the protein was detected (4/7)

showed outlier ALK total protein abundance. However, the

most dramatic difference was seen in the specific increase in

ALK phosphosite Y1507 (Figure 2C). While RNA expression

levels of the 50 partner genes were uniformly high and did not

differ between fusion-positive and -negative samples (Figure 2D),

both EML4-Y226 and HMBOX-S141 showed increased phos-

phorylation only in the corresponding gene fusion-positive tumor

samples (Figure 2E). We employed immunohistochemistry (IHC)

to validate observation of the fusion-specific ALK phosphosite

Y1507 using commercially available ALK and phospho (Y1507)

ALK antibodies. We noted tumor-specific positive staining in all

available ALK fusion-positive cases, whereas no detectable

staining was observed in either samples with ROS1/RET fusions

or paired NATs (Figures 2F and S2C). To assess phosphorylation

of canonical and possible novel targets by mislocalized ALK

fusion proteins (Ducray et al., 2019), we identified all protein

phosphorylation events associated with ALK fusion. This anal-

ysis identified tyrosine phosphorylation of multiple proteins

such as SND1, HDLBP, and ARHGEF5 (Figure 2G), providing

new potential insights into oncogenic ALK fusion protein

signaling, pending further validation to establish direct functional

connections. SND1, for instance, has previously been described

as an oncogene (Jariwala et al., 2017), impacts biological pro-

cesses such as angiogenesis and invasion, and regulates

expression of oncogenic miRNAs (Chidambaranathan-Reghu-

paty et al., 2018), suggesting a novel role in ALK fusion-mediated

tumorigenesis.

Although sample-wise mRNA-protein correlations were fairly

consistent between tumors and NATs (Figure S3A; Table S4),

gene-wise correlations displayed striking differences (Figure 3A),

and results were unchanged after adjusting for immune and stro-

mal infiltration. We identified a total of 227 transcript/protein

pairs differentially correlated (false discovery rate [FDR] < 0.01)

between tumors and NAT pairs, globally, or within four major

mutational subtypes (Figure 3A; Table S4). The identified

gene products were markedly enriched for RNA metabolism,
Figure 2. Novel Phosphoproteomic Aberrations Associated with ALK G

(A) Summary of all kinase gene fusions identified from RNA-seq analysis.

(B) RNA expression, protein abundance, and specific phosphosite modifications n

(C) Boxplot showing outlier expression of ALKRNA, protein, and the ALK Y1507 ph

tumor samples. Sample IDs of outlier cases are indicated.

(D) Boxplot showing overexpression of ALK mRNA observed in fusion-positive (re

expression in both fusion-positive and -negative tumors, as expected.

(E) Boxplot showing the phosphorylation of two ALK fusion partners, HMBOX1 a

(F) Immunohistochemistry reveals upregulation of both total ALK and the ALK

samples. No staining was seen in RET or ROS1 fusion samples or in matched N

(G) Scatterplot of significantly regulated phosphosites and their corresponding pr

distinct upregulation in ALK fusion samples are highlighted in red.

See also Figure S2.
peptide biosynthesis, methylation, mRNA splicing, nuclear pro-

cessing, mitochondrial organization, and chromatin modifiers

(p value < 10�3), suggesting tighter or more active translational

control of proteins involved in proliferation, cell cycle events,

and survival in tumors (Figure S3B).

The impact of copy number alterations (CNAs) on RNA and

protein abundance in both cis and transwas characterized (Fig-

ure 3B; Table S4). CNA correlations were broadly comparable

but considerably dampened at the levels of proteins and

PTMs (Figures 3C and S3C). A total of 6,043, 2,354, and 244

significant positive correlations (cis effects) were observed for

RNA, proteins, and phosphoproteins, respectively, with only

156 significant cis effects overlapping between all three (Fig-

ure 3C; Table S4). A similar trend was observed within 593 can-

cer-associated genes (CAGs) (Figure 3C; Table S4), with 12

CAGs showing significant overlapping regulation, including

CREBBP, KMT2B, PSIP1, AKT2, EGFR, GMPS, IL6ST, IRF6,

NFKB2, PHF6, YES1, and ZBTB7B. In addition, numerous

genes associated with recurrent LUAD-specific CNA events

(Campbell et al., 2016) showed downstream expression ef-

fects, including significant cis-regulation at RNA and protein

levels for CDK4, RB1, SMAD4, ARID2, MET, ZMYND11, and

ZNF217.

To help nominate functionally important genes within CNA re-

gions, we compared protein-level trans-effects to approximately

half a million genomic perturbation signatures contained in the

Connectivity Map database (https://clue.io/cmap). Trans effects

significantly paralleled the associated gene perturbation profiles

for 12 CNA events (FDR < 0.1) (Figure 3D; Table S4). Ras-related

protein Ral-A (RALA) is a GTPase that has been shown to

mediate oncogenic signaling and regulate EGFR and KRASmu-

tation-mediated tumorigenesis (Gildea et al., 2002; Kashatus,

2013; Peschard et al., 2012). Our data suggest that amplification

of RALAmay affect the biology of EGFRmutant tumors. The role

of basic leucine zipper andW2 domain 2 (BZW2) in LUAD has not

been elaborated, but BZW2 stimulates AKT/mTOR/PI3K

signaling and cell growth in bladder and hepatocellular carci-

nomas (Gao et al., 2019; Jin et al., 2019), and has also been

shown to interact with EGFR (Foerster et al., 2013). The lyso-

somal cysteine proteinase cathepsin B (CTSB) has long been

described as a marker of poor prognosis in LUAD (Fujise et al.,

2000; Inoue et al., 1994), with mechanistic association with

metastasis (Erdel et al., 1990; Higashiyama et al., 1993). Pro-

tein-level trans effects thus provide testable mechanistic hypoth-

eses for the tumorigenic impact of CNAs.
ene Fusions

oted to be outliers in the index fusion event sample relative to all other samples.

osphosite in tumorswithALK fusion. Blue: normal adjacent tissues (NAT); pink:

d) versus -negative (blue) tumors. The three 50 partners show comparably high

nd EML4, in the indicated index cases.

Y1507 phosphosite specifically in the tumor epithelia of ALK fusion-positive

ATs (Figure S2C).

otein expression in tumors with and without ALK fusion. Phosphosites showing
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DNA methylation analyses showed LUAD tumors to be much

more highly methylated than their counterpart NATs (p value <

0.0001) (Figure S3D; Table S2). Unsupervised clustering of the

tumor methylome revealed CIMP-high, -intermediate, and -low

clusters, with CIMP-low clusters nevertheless having focal areas

of increased methylation (Figure S3E). Figure 3E shows the land-

scape of 120 methylation-driven cis effects that were associated

with coordinated differential expression at the RNA, protein, and

phosphoprotein levels, increasing their likelihood of functional

significance (Song et al., 2019; Table S4). The majority (85/120)

were directly supported by probe-level data in the promoter re-

gion of the gene. Whereas many of these were novel, others,

including CLDN18, ANK1 and PTPRCAP (Figure 3F) have strong

associations with LUAD biology. CLDN18 is highly expressed in

lung alveolar epithelium; its knockdown leads to increased lung

parenchyma, expansion of lung epithelial progenitor popula-

tions, and increased propensity for lung adenocarcinoma devel-

opment (Zhou et al., 2018). ANK1 promoter CpG islands are hy-

pomethylated in normal lung but methylated in more than half of

lung adenocarcinomas, especially with positive smoking history.

ANK1 knockdown affects cancer-relevant pathways; further-

more, miR-486-3p and miR-486-5p, both strongly associated

with lung adenocarcinoma oncogenesis, are located within

ANK1 introns and are co-expressed with their host gene.

PTPRCAP (CD45-associated protein), together with the three

other members of its supramolecular complex, PTPRC (phos-

phatase CD45), co-receptor CD4, and kinase LCK, is implicated

in regulation of lymphocyte function (Kruglova et al., 2017; Mat-

suda et al., 1998). Although methylation probe positions did not

allow us to determine whether the complex partners of

PTPRCAP are regulated by methylation, the partners showed

coordinated expression at the protein level (Figure 3G). Notably,

PTPRCAP was included in a five-gene, methylation-based im-

mune signature associated with survival in multiple malignancies

including lung cancer (Jeschke et al., 2017). Other cancer-

related genes with ‘‘cascading’’ methylation effects include

BCLAF1, GSTP1, MGA, and TBX3, all of which have established

roles in tumorigenesis or cancer prognosis (Cancer Genome

Atlas Research Network, 2014; Chen et al., 2013; Gurioli

et al., 2018).
Figure 3. Impact of Copy Number Alteration and DNA Methylation on P
(A) Correlation between steady-state mRNA and protein abundances in tumors a

correlations (FDR < 0.01). Bottom panel represents enriched biological terms, w

(B) Correlation plots between copy number alteration (CNA) and RNA expression a

negative correlations are indicated in red and green, respectively. CNA-driven cis

green lines. The accompanying histograms show the number of significant (FDR <

plot) as well as the overlap between CNA-RNA and CNA-protein events (downw

(C) Venn diagrams depicting the cascading effects of CNAs. The Venn diagram

scriptome, proteome, and phosphoproteome. The Venn diagram on the right s

significant cis effects across multiple data types.

(D) Genes with CNA events that show significant similarity (BH FDR < 0.1) betwee

genomic perturbation profiles. Inset shows significant enrichment (Fisher’s exact

(E) Genes whose DNA methylation was associated with cascading cis regulation

abundance. Bold type highlights a few known cancer genes.

(F) Methylation-driven cis regulation of selected genes (n = 109 samples). Gene-

abundances were converted into Z scores, and the tumor samples were ordered

(G) Coordinated expression of proteins associated with PTPRC (CD45) complex

See also Figure S3 and Table S4.
Connecting Driver Mutations to Proteome,
Phosphoproteome, and Pathways
We examined how selected mutated genes that were significant

in prior large-scale LUAD genomics studies (Cancer Genome

Atlas Research Network, 2014; Ding et al., 2008) (Table S5) influ-

enced expression of either the cognate gene product (cis ef-

fects), or other gene products (trans effects), specifically of a

defined set of cancer-related genes (Bailey et al., 2018). We

identified 11 genes with significant (FDR < 0.05) cis or trans ef-

fects in RNA, protein, or phosphoprotein data (Figures 4A and

S4A). TP53 and EGFR mutations resulted in elevated cognate

protein and phosphosite abundance, whereas STK11, RBM10,

RB1, NF1, and KEAP1 mutations reduced both cognate protein

and phosphosite abundance. TP53 showed evidence of post-

translational regulation, whereas TP53 mutant tumors showed

upregulation of proteins in the mismatch repair (MMR) pathway,

such as MLH1, MSH2, MSH6, and PSM2, and proteins involved

in the DNA damage response (DDR) pathway, including ATM,

ATR, and BRCA1. TP53mutant tumors also showed significantly

elevated EZH2 protein relative to RNA expression, as observed

in TP53 mutant cell lines (Kuser-Abali et al., 2018), and downre-

gulation of proteins involved in Wnt signaling (e.g., AXIN1 and

TCF7L2) (Rother et al., 2004; Sanchez-Vega et al., 2018). Muta-

tions in RB1, another key cell-cycle-related gene, were associ-

ated with increased CDK4 protein abundance, which may

contribute to resistance to CDK4/6 inhibitors in RB1-mutated

LUAD samples. SMARCA4 mutation led to increased SMAD2

protein expression, whereas STK11 mutation was associated

with increased phosphorylation of SMAD4 (S138). SMADs 2

and 4 are key elements in the transcriptional regulation of epithe-

lial-mesenchymal transition (EMT) induced by transforming

growth factor b (TGF-b) signaling (Xu et al., 2009). EGFR mutant

samples showed decreased CTNNB1 expression at the level of

RNA but elevated expression both at the level of proteome and

phosphoproteome. CTNNB1 has been shown to play a critical

role in EGFR-driven LUAD (Nakayama et al., 2014), and the

trans-regulated phosphosite S552 on CTNNB1 induces its tran-

scriptional activity (Fang et al., 2007). Altered phosphorylation

and decreased acetylation were also observed for CTNND1,

which has been implicated in nuclear factor kB (NF-kB) and
rotein and Phosphoprotein Expression
nd NATs (n = 101 pairs) for genes with discrepant tumor/normal mRNA-protein

ith �Log10 (p value) in brackets.

nd between CNA and protein abundance. Significant (FDR < 0.05) positive and

effects appear as the red diagonal line; trans effects appear as vertical red and

0.05) cis and trans events corresponding to the indicated genomic loci (upward

ard plot).

on the left shows the overlap between significant cis events across the tran-

hows the same analysis restricted to cancer-associated genes (CAGs) with

n their significant trans effects (FDR < 0.05) and the Connectivity Map (CMAP)

test, FDR < 0.1) for specific mutational or demographic features for four genes.

of their cognate mRNA expression, global protein level, and phosphopeptide

level methylation scores, RNA expression levels, and protein/phosphopeptide

by methylation levels.

in tumors.
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RAC1-mediated signaling but not previously described in EGFR-

mediated LUAD (Mizoguchi et al., 2017; Perez-Moreno

et al., 2006).

The cis and trans effects identified above (Figure 4A) helped

reveal the detailed regulatory network of the KEAP1/NFE2L2

(NRF2) complex. KEAP1 interacts with NFE2L2 through two

distinct binding domains, DLG and ETGE (Canning et al.,

2015; Fukutomi et al., 2014), and undergoes conformational

change under oxidative stress allowing NFE2L2 to execute

the antioxidant response vital to lung cancer progression and

metastasis (Lignitto et al., 2019; Wiel et al., 2019). Twelve

LUAD tumors harbored KEAP1 mutations (Figure S4B) that

did not impact expression of KEAP1 or NFE2L2 RNA (Fig-

ure S4C) but generally resulted in downregulation of KEAP1

protein expression and increased phosphorylation of NFE2L2

on S215 and S433 (FDR < 0.05) (Figures 4B and S4C). One

BTB domain missense mutation (G511V) did not downregulate

KEAP1 protein expression but had among the highest levels of

NFE2L2 phosphorylation (Figure 4B), suggesting a novel mech-

anism of action. Superposition of the site on the KEAP1 crystal

structure showed that the G511V mutation fell close to the

KEAP1/NFE2L2 binding domain (Figure 4C). We hypothesize

that this mutation functions to disrupt KEAP1-NFE2L2 interac-

tion rather than to impact protein stability. Most proteins and

phosphosites upregulated in samples with KEAP1 mutations

(Figures S4D and S4E) are members of the NFE2L2 oncogenic

signatures and associated with antioxidant responses cytopro-

tective to cancer cells (Figure S4F) (Taguchi and Yama-

moto, 2017).

Identification of Therapeutic Strategies from
Proteogenomics Analyses
Comparison of global differential regulation of RNA, proteins,

phosphosites, and acetylsites revealed extreme phosphosite

outliers in both KRAS and EGFR mutant tumors (Figures 4D

and 4E; Table S4). KRAS mutant tumors showed significant up-

regulation of numerous cancer-associated phosphosites,

including SOS1 phosphorylation on S1161. SOS1 is a guanine

exchange factor (GEF) that activates KRAS (Vigil et al., 2010),

and inhibition of SOS1 and KRAS is an emerging therapeutic

strategy for KRAS mutant cancers (Hillig et al., 2019; O’Bryan,

2019). The observed C-terminal phosphorylation of SOS1 (Ka-
Figure 4. Impact of Somatic Mutation on the Proteogenomic Landsca

(A) Significant (FDR < 0.05, Wilcoxon rank-sum test) cis and trans effects of select

PTMs (right).

(B) Scatterplots showing the relationship between log2 KEAP1 protein and log2

Only significant sites (FDR < 0.05, Wilcoxon rank-sum test) are shown.

(C) Ribbon/Richardson diagram (Protein Data Bank crystal structure PDB:3WN7) r

interaction. Positions of various KEAP1 amino acid residues affected by somatic

(D and E) Scatterplots showing significance of RNA, protein (green), phosphory

KRASmutant (D) or EGFRmutant (E) and WT tumors as determined using the Wil

(FDR < 0.05) specified by triangles. Identities of the most extreme outliers are de

(F) Heatmap showing phosphorylation of PTPN11 Y62 in EGFR mutant and WT s

(G) Heatmap showing the outlier kinases enriched (FDR < 0.2) at the phosphoprot

genes. Cancer Dependency Map-supported (https://depmap.org) panels on the

cell lines after depletion of the indicated gene (rows) by RNAi or CRISPR. Drugga

indicated alongside the availability of FDA-approved drugs. The log-transformed d

drug-gene relationship.

See also Figure S4 and Table S4.
mioka et al., 2010) likely relieves its constitutive interaction with

GRB2 (Giubellino et al., 2008), allowing its recruitment to the

membrane for KRAS activation in a GRB2-independent manner

(Aronheim et al., 1994; Rojas et al., 2011). Interestingly, we also

observed C-terminal phosphorylation of another GEF-containing

protein, DNMBP (TUBA), the role of which is not yet established

in LUAD or KRAS mutant cancers.

EGFR mutant tumors showed highly significant and remark-

ably consistent tyrosine phosphorylation of PTPN11/Shp2 at

Y62, but no effect was observed at the RNA or protein levels (Fig-

ures 4E and 4F). Although prior studies have associated

PTPN11/Shp2 phosphorylation with important biological conse-

quences in NSCLC cell lines and xenograft models, this is, to our

knowledge, the first report of such phosphorylation in a large set

of primary treatment-naive LUADs. In its basal state, PTPN11/

Shp2 is inactive in a closed conformation because of the interac-

tion between the N-terminal Src homology 2 (N-SH2) domain

and the active site of the phosphatase (PTP) domain. Upon

active conformational change induced by growth factor receptor

and cytokine signaling, the phosphatase regulates cell survival

and proliferation chiefly through RAS and ERK activation (Mato-

zaki et al., 2009). Elevated PTPN11/Shp2 mRNA and protein

expression have been associated with metastasis and

decreased overall and progression-free survival in EGFR-posi-

tive NSCLC patients (Tang et al., 2013; Karachaliou et al.,

2019). Importantly, residue Y62 falls in the interface between

the N-SH2 and PTP domains, where its phosphorylation is

thought to stabilize the active protein conformation (Ren et al.,

2010). Notably, ALK fusion-driven tumors also showed outlier

phosphorylation of PTPN11/Shp2, albeit at the C-terminal tyro-

sine phosphorylation sites Y546 and Y584 (Figure S4G).

Irrespective of the mode of activation, multiple lines of evi-

dence suggest that PTPN11/Shp2 inactivation can suppress

tumorigenesis (Aceto et al., 2012; Prahallad et al., 2015; Ren

et al., 2010; Schneeberger et al., 2015), making it among the

highest priority PTP targets for anticancer drug development

(Ostman et al., 2006). PTPN11/Shp2 inhibitors have shown great

promise in preclinical trials (Chen et al., 2016) and targeted

agents from multiple companies are now in clinical trials. Our

data suggest that EGFR mutant- and ALK fusion-driven LUADs

would be particularly promising target populations for such

therapy.
pe

ed mutations (x axis) on the expression of cancer-associated proteins (left) and

NFE2L2 phosphosite (S215 and S433) expression in KEAP1 mutant samples.

epresenting 3D protein structure of KEAP1 (pink) andNFE2L2DLGmotif (green)

mutations observed in this cohort are indicated.

lation site (purple), and acetylation site (yellow) abundance changes between

coxon rank-sum test. All identified sites are represented, with significant PTMs

signated.

amples.

ein, protein, RNA and CNA levels, and their association with mutations in select

left show log2-transformed relative survival averaged across all available lung

bility based on the Drug Gene Interaction Database (http://www.dgidb.org/) is

ruggability score indicates the sum of PubMed journal articles that support the
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Protein-level pathway comparison of tumors driven by EGFR

and KRAS mutations showed remarkable disparity in comple-

ment and clotting cascades, with upregulation of coagulation

in KRAS and downregulation in EGFR mutant samples (Fig-

ure S4I and hemostasis signature, Figure 1E). The increased

risk of venous thromboembolism (VTE) in patients with primary

lung cancer is well established (Chew et al., 2008), as are the

risks of prophylactic anticoagulation (Key et al., 2020). Our

data suggest that VTE management might be stratified by muta-

tion type, a concept supported by a recent NSCLC study in

which the likelihood of VTE was significantly lower in patients

without EGFR mutations (Dou et al., 2018).

To systematically nominate druggable targets specific to

groups of LUADs characterized by key driver events, we as-

sessed hyperphosphorylation of kinases as a proxy for abnormal

kinase activity (Blumenberg et al., 2019; Dou et al., 2020; Mertins

et al., 2016) (Figure 4G) and annotated outliers for the degree to

which short hairpin RNA (shRNA)- or CRISPR-mediated deple-

tion reduced survival and proliferation in lung cancer cell lines

(Barretina et al., 2012; Tsherniak et al., 2017). Multiple signifi-

cantly hyperphosphorylated kinases (FDR < 0.20) were identified

in samples with EGFR, KRAS, TP53, STK11, KEAP1, or EML4-

ALK alterations, the majority of which lacked any associated ab-

erration in CNA, RNA, or protein expression. Importantly, several

driver-specific outlier kinases have interactions with FDA-

approved drugs. In addition to EGFR in EGFR mutants, we

saw outliers in PRKCD in KRASmutants, BRAF in TP53mutants,

and WEE1 in EML4-ALK fusions. Furthermore, we identified 27

putatively druggable kinases with known but as yet non-FDA

approved inhibitors (Cotto et al., 2018). Similar phosphorylation

outlier analyses were performed for phosphatases, ubiquiti-

nases, and deubiquitinases (Figure S4J), though the role of phos-

phorylation in these protein classes is not fully established.

Immune Landscape of Lung Adenocarcinoma
The composition of the tumor microenvironment in our cohort

was studied using xCell (Aran et al., 2017) on the RNA-seq
Figure 5. Immune Landscape in LUAD
(A) Heatmaps show three consensus clusters based on immune/stromal signature

stromal cell types. The pathway heatmap panels show some key upregulated pa

protein abundance only (FDR < 0.01, Wilcoxon test). The expression heatmap pa

evasion mechanisms.

(B) Association between mutation profiles and immune/stromal signatures from

(C) xCell scores for conventional dendritic cells (cDCs) and macrophages for NA

sample shows significant infiltration by either dendritic cells (left) or macrophages

only in tumor (red), or in neither NAT nor tumor (light gray). Samples withSTK11mu

subset of samples with infiltration of macrophages and dendritic cells only in NA

(D) Boxplots show association between STK11 mutation and immune score (EST

(E) t-SNE (t-Distributed Stochastic Neighbor Embedding) plot provides a two-dim

(orange) and WT (blue) tumor histopathology tiles submitted to a deep learning alg

exhibit different histologic features. STK11WT tiles correctly recognized by the m

typical adenocarcinoma characteristics without inflammation.

(F) Cluster diagram representing pathways significantly associated with STK11mu

clustering. TheMetascape output represents enriched biological concepts as nod

membership, and names the clusters based on their most significant node. Node

the top 20 clusters, the one representing neutrophil degranulation showed highe

(G) Scatterplot shows differentially regulated protein and RNA expression (signe

ciated with neutrophil degranulation are highlighted in red.

See also Figure S5 and Table S5.
data of both tumors and NATs. Sixty-four different cell types

were identified, spanning immune, stromal, and other groups

(Table S5). Consensus clustering identified three major immune

clusters, designated ‘‘hot’’- (HTE), ‘‘cold’’-tumor-enriched

(CTE), and NAT-enriched (Figure 5A, upper panel; Table S5). As-

sociations were observed between immune and multi-omics

clusters, with enrichment of multi-omics cluster C1 in HTE and

of clusters C3 and C4 in CTE immune clusters (p value <

0.0003, Fisher’s exact test). CIMP-low status also associated

with HTE (Figure 5A). HTE were distinguished from CTE tumors

by their stronger signatures for B cells, CD4+ and CD8+

T cells, dendritic cells, and macrophages. The HTE proteome

was characterized by upregulation of multiple immune-related,

oncogenic, and signaling pathways (Figure 5A, middle panels;

Table S5), many of which were significantly enriched (FDR <

0.01, Wilcoxon test) exclusively in the proteomics dataset. PD1

RNA and PD-L1 RNA and protein were also upregulated in the

immune HTE cluster (FDR < 0.01) (Figure 5A, lower panel; Table

S5). Notably, however, the HTE subtype also revealed the pres-

ence of immune inhibitory cells such as regulatory T cells, and

showed RNA upregulation of key markers of T-reg function

such as CTLA4 (FDR < 10�10) and FOXP3 (FDR < 0.0001) (Table

S5). Transcripts for cytokines including TGF-b and interleukin-10

(IL-10), known to enhance T-reg suppressive mechanisms, were

upregulated in HTE tumors. As tumors with high T-reg infiltration

are typically associated with poor prognosis (Shimizu et al.,

2010), anti-CTLA4 therapy may benefit this population (Wing

et al., 2008).

Various metabolic pathways were upregulated in CTE cluster

tumors (Figure 5A; Table S5). Glycolysis, which has been impli-

cated in immune evasive mechanisms in many solid tumors

but only marginally in LUAD (Ganapathy-Kanniappan, 2017)

(Giatromanolaki et al., 2019), was significantly upregulated only

in proteomics data, as were ‘‘peroxisome’’ and ‘‘peroxisome

proliferator-activated receptor (PPAR) signaling pathway’’ activ-

ities (both FDR < 0.001) (Figure 5A, middle panel; Table S5).

Several studies have shown that interferon gamma (IFNG)
s identified from xCell, together with derived relative abundance of immune and

thways in HTE and CTE clusters based on multi-omics (‘‘common’’) or global

nel depicts the RNA and protein levels of various markers involved in immune

xCell. Only associations significant at FDR < 0.05 are shown.

T samples (x axis) and tumor samples (y axis). Scatterplots indicate if a given

(right) (xCell p value < 0.05) in both NAT and tumor (black), only in NAT (blue),

tations are displayed with a triangle. STK11mutation was found enriched in the

Ts (Fisher’s exact test, FDR < 0.1).

IMATE).

ensional representation of the activation scores of individual STK11 mutated

orithm. Examples of true positive (red outline) and negative (black outline) tiles

odel harbor abundant inflammatory cells, whereas STK11mutant tiles showed

tation-enriched cluster IC-068 (Figure S5F) in protein-based unsupervised ICA

es, aggregates those nodes into clusters based on the similarity of their protein

size represents the number of differentially expressed gene products. Among

st significance (Q value < 10�14). The top 5 clusters by p value are highlighted.

d �log10 p value) in tumors with and without STK11 mutation. Proteins asso-
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promoter activity can be inhibited by PPAR-gamma activation

(Marx et al., 2000) and that suppression of the inflammatory im-

mune response by PPAR-gamma activation may be achieved

through induction of immune cell apoptosis. PPAR-gamma acti-

vation was shown to impair T cell proliferation through an IL-2

dependent mechanism, whereas PPAR-beta activation was

shown to favor oxidation of fatty acids and glucose in developing

T cells (Le Menn and Neels, 2018). In addition, CTE tumors

showed upregulation of cell-cell junction and other proteins

that provide barrier functions for epithelium, suggesting a me-

chanical barrier against immune cell infiltration (Figures 1E and

5A; Table S5) (Salerno et al., 2016) (Streeck et al., 2011).

As an orthogonal assessment of the immune landscape of

LUAD, we ranked tumors by activity of the IFNG axis, which is

responsible for activation of the adaptive immune system (Abril-

Rodriguez and Ribas, 2017), and assessed regulation of estab-

lished protein markers of immune evasion (Achyut and Arbab,

2016; Allard et al., 2016; Liu et al., 2018). The protein abundance

of some important immune evasion markers (Jerby-Arnon et al.,

2018), including IDO1, was upregulated in both the HTE and

INFG-high clusters (Figures 5A and S5A). IDO1 has well-docu-

mented roles in angiogenesis, EMT (Zhang et al., 2019), and can-

cer immunosuppression (Liu et al., 2018); hence, IDO1 inhibition

may represent an additional therapeutic opportunity in immune-

hot LUAD tumors (Kozuma et al., 2018; Takada et al., 2019). Other

important immune-evasive or immune-related markers were also

observed. The pulmonary epithelium is a physical barrier that pro-

duces antimicrobial mucus and surfactant proteins, facilitates

host-microbiota interactions to control mucosal immunity, and

is critical for tumor development (Whitsett and Alenghat, 2015).

Upregulation of immunosuppressive components of the pulmo-

nary epithelial barrier, including MUC5B and WFDC2 (HE4), was

observed in the CTE cluster of lung tumors (Figure 5A, lower

panel) (Parikh et al., 2019; Roy et al., 2014), and surfactants

SFTPB, DMBT1, SFTPA1, and SFTPD were increased in tumors

with low IFNG axis scores (Figure S5B) (Nayak et al., 2012; Seifart

et al., 2005; Wang et al., 2009).

Notably, the NAT-enriched cluster had immune infiltration sig-

natures that were intermediate between the HTE and CTE sub-

types (Figure 5A), suggesting bi-directional regulation, with

pro-inflammatory mechanisms in HTE and immune-evasive

mechanisms in CTE tumors. The most dramatic downregulation

of immune activation was in STK11mutant tumors, with marked

reductions in xCell-derived dendritic cell, natural killer T cell, and

macrophage signatures (FDR < 0.05) (Figure 5B; Table S5). In

striking contrast, STK11mutant-associated NATs were enriched
Figure 6. Environmental and Smoking-Related Molecular Signatures

(A) Heatmap showing correlation coefficients between the mutational signatures

et al., 2019). Self-reported smoking status, derived smoking score, di-nucleotide

(B) Impact of tumor-derived high or low smoking score (HSS; >0.1; LSS; <0.1) on

heatmaps show protein-expression-derived, differentially regulated (FDR < 0.05)

(right). Pathway groups (PG1–6) are defined according to the patterns of differen

activated pathways is provided in Table S6.

(C) Boxplots showing log2 relative abundance of ARHGEF5 phosphosite Y1370

never-smokers (SNS) with and without ALK fusion and from strict smokers (SS).

samples only.

See also Figure S6 and Table S6.
for dendritic cell and macrophage infiltration (FDR < 0.1) (Fig-

ure 5C). ESTIMATE immune scores (Yoshihara et al., 2013),

reduced for all STK11 mutants, were particularly low for those

WT forKRAS (Figure 5D; Table S5). This immune downregulation

was not due to low mutation burden, given that NMF cluster C3,

strongly enriched for STK11 mutants (Figure 1E), was second

only to cluster C1 in somatic mutation burden (Figures S5C

and S5D). The immune-cold landscape of STK11mutant tumors

proved to be the dominant feature in a deep-learning-based pre-

dictive algorithm for determining LUAD mutational status from

histopathology that achieved 94% accuracy at the slide level

(Figure 5E). The defining histopathologic features of STK11

mutant samples related to tumor epithelium, whereas STK11

WT samples were predominantly characterized by immune cells

(Figure 5C).

To understand the mechanisms underlying the immune-cold

phenotype ofSTK11mutants, we examined differential RNA, pro-

tein, and phosphoprotein expression between STK11 WT and

mutant samples. Pathway enrichment identified neutrophil

degranulation to be the signature most strongly associated with

STK11 mutation. Notably, neutrophils did not appear to be either

specifically enriched or depleted inSTK11mutant tumors (Figures

5A and 5B). Nevertheless, the robustness of this association was

apparent even in unsupervised approaches. Independent

component analysis (Liu et al., 2019) identified a cluster strongly

enriched for STK11 mutant tumors, the defining proteomic

pathway feature of which was neutrophil degranulation (Figures

5F and S5F; Table S5). All 16 of the measured proteins strongly

associatedwith neutrophil degranulation were coherently overex-

pressed inSTK11mutant tumors (FigureS5G). This signal was not

detectable at the RNA level given that the proteins, following

translation, are stored in the granules until later release (Figures

5G and S5G). Most of these proteins, including CAMP, LTF,

BPI, MMP8, MMP9,MPO, LCN2, ELANE, and ARG1, have estab-

lished immune modulatory functions, collectively suggesting a

compelling hypothetical mechanism that may account for some

of the immunologic effects of STK11 mutation.

Characterization of Smoking-Related Phenotype in
Tumors and NATs
In order to better characterize the influence of smoking as a ma-

jor contributor to LUAD, we used SignatureAnalyzer (Kim et al.,

2016) (Figure S6A; Table S6) to identify the dominant di-nucleo-

tide polymorphisms (DNP) GG/TT or CC/AA (�50%) associ-

ated with smoking status. We then integrated tumor purity

estimates, counts of total mutations, and percentages that
of LUAD tumor samples and 53 signatures of environmental exposure (Kucab

polymorphism (DNP) status, and the fraction of Cosmic signature 4 are shown.

pathways associated with protein expression in tumors and paired NATs. The

pathways associated with LSS and HSS, separately in tumors (left) and NATs

tial HSS/LSS expression in tumors and NATs. A complete list of differentially

, ARHGEF5, and SRGAP1 protein expression in tumors and NATs from strict

None of the SS tumors had ALK fusion. ANOVA test was performed on tumor
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were smoking-signature mutations and smoking-signature

DNPs into a continuous smoking signature score and defined

high and low smoking scores (HSSs and LSSs, respectively)

(Figure S6B; Table S6). No fully independent smoking effect

emerged from linear models adjusted for known confounders

including mutation status, sex, and place of origin. However,

conventional differential protein and pathway analysis to identify

potential carcinogenic or tumor-supportive mechanisms spe-

cific to never-smokers identified a set of proteins with prior evi-

dence of relevance to LUAD biology (Table S6). Regression of

the 96 possible trinucleotide mutation combinations between

the samples in our cohort and the environmental signatures re-

ported by Kucab and colleagues (Kucab et al., 2019) found

strong correlations in many samples of signatures of polycyclic

aromatic hydrocarbons (PAHs) known to be present in cigarette

smoke, including DBADE, DBA, and 5-Methylchrysene (Fig-

ure 6A; Table S6). Moreover, these cases correlated highly

with our smoking score and with self-reported smoking status

(Figure 6A). Other environmental contributors, evidently unre-

lated to cigarette smoking, were nevertheless also strongly

correlated (Figure S6C), suggesting caution in interpreting these

mutational associations and emphasizing the need for compre-

hensive clinical annotation including details on environmental

and occupational exposures and dietary habits.

As reported for other cancers (Malta et al., 2018), tumors

showed significantly higher RNA-based stemness index

compared to NATs (Figure S6D). Within both tumors and

NATs, samples with HSS showed higher stemness than samples

with LSS (Figure S6E), consistent with the known field canceriza-

tion effect of tobacco exposure (Walser et al., 2008).

We identified six patterns of differential pathway regulation

between tumor and paired NAT samples with HSS and LSS

(Figure 6B; Table S6). Pathways including cell cycle and tran-

scription machinery were reduced in NATs with HSS compared

to LSS, but this pattern was reversed in tumors (pathway group

[PG]1). Contrariwise, the AIM2 inflammasome, P53 pathway

activity, and apoptosis were higher in NATs with HSS than

LSS but lower in HSS tumors, consistent with smoking-related
Figure 7. Summary of Global Proteogenomic Alterations in Tumors an

(A) Principal component analysis of protein expression shows distinct separation o

represent the centroids of the distributions.

(B) Scatterplots show the median log2 fold change between tumors and paired

dashed line shows equivalence with intercept 0. Red triangles indicate sites with

protein changes between log2, +2 and �2-fold. Blue triangles represent downre

(C) Proteomics-based biomarker candidates (log2 fold change [log2FC] > 2 and F

mutated genes. Numbers in parentheses show candidates displayed/identified, w

tumor sample. Blue-colored boxplots highlight proteins with overexpression in mo

groups and relevant clinical trial drug targets of the biomarker candidates are sh

(D) Volcano plot showing the enrichment score (x axis) and associated log p va

tumors andmatched NATs as assessed by PTMSignature Enrichment Analysis (K

brown. The size of the circles shows the overlap between phosphosites detecte

et al., 2018).

(E) Rank plots depicting differential phosphosite-driven signatures (1.5 3 interqu

EGFR (n = 38) or KRAS (n = 33). Residual enrichment scores (y axis) were calcula

highlight tumor/NAT differences in tumors harboring each specific mutation.

(F) Heatmap representing tumor antigens including neoantigens (top panel) and

2009). ‘‘DNA repair’’ indicates mutation in DNA repair genes (POLE, MLH1, MLH3

overexpressed at least 2-fold in tumors compared to paired NATs in more than 1

See also Figure S7 and Table S7.
tumors more effectively inactivating tumor suppressors and

overcoming immune surveillance and apoptosis (PG2). HSS

had parallel effects on tumors and NATs in higher MYC target

activity and ferroptosis, and lower Hippo pathway signaling

and NF-kB and IL-17 activity (PG3 and 4). Finally, pathways

including the unfolded protein response and RAS signaling

through NTRK2 were higher in tumors but not NATs with

HSS, whereas necroptosis and caspase signaling through

death receptors were lower (PG5 and 6). Notably, the smoking

signature-associated pathway-level differences that defined

PGs 1–4 were more prominent on the protein than RNA level

(Figure S6F).

Among the proteins differentially regulated in smokers and

never-smokers were Rho GTPase signaling pathway members

ARHGEF5 and its phosphosite ARHGEF5_Y1370y, elevated in

SNS, and SRGAP1, suppressed in SNS (Figures 6C and PG4

in Figure 6B). ARHGEF5_Y1370y levels were highest in patients

with ALK fusion, consistent with its extreme outlier status (Fig-

ure 2F). Activating phosphorylation of ARHGEF5 by tyrosine ki-

nases (e.g., EML4-ALK), accompanied by downregulation of

the negative Rho GTPase regulator SRGAP1, may lead to hyper-

activation of Rho GTPase signaling and tumorigenesis in a sub-

set of non-smoking patients. Auto-inhibitory peptides blocking

the activity of ARHGEF5 have been described (He et al., 2015;

Huang et al., 2015) and represent a potential therapeutic inter-

vention in this population. Differential pathway analysis also pro-

vided evidence that, in non-smokers, the cytoprotective and

anti-inflammatory stress response Heme oxygenase system

might contribute to tumor survival (see also PG2, Figure 6B).

This process can potentially be inhibited by metalloporphyrins

or imidazole-based drugs (Podkalicka et al., 2018).

Tumor-NAT Comparisons Reveal Tumorigenic Changes
and Biomarker Candidates
Proteogenomic profiles were derived for both tumors and paired

NATs, presenting a unique opportunity to explore proteoge-

nomic remodeling upon tumorigenesis (Table S7). Protein-level

principal component analysis showed tumor and more
d Paired NATs

f tumor samples (n = 110) and NATs (n = 101). The larger rectangle and triangle

NATs in the proteome versus phosphosites (left) and acetylsites (right). The

at least log2 4-fold site-level increased abundance compared to associated

gulated sites using symmetric parameters (full list in Table S7).

DR < 0.01 inR80% of tumor-NAT pairs) for tumors with any of four frequently

ith up to 40 differentially regulated proteins represented. Each dot represents a

re than 99% of tumor samples with the associated mutation. Protein functional

own in the accompanying schematic. See also Figure S7D.

lue (y axis) of differentially regulated phosphosite-driven signatures between

rug et al., 2018). Significant (FDR < 0.05) signatures are highlighted in shades of

d in our dataset and the phosphosite-specific signatures in PTMsigDB (Krug

artile range, IQR) between tumor and paired NATs in tumors with mutations in

ted between mutated tumors (EGFR or KRAS) and all other tumors in order to

cancer testes antigens (CTs) (downloaded from CT database; Almeida et al.,

,MSH3,MSH4, MSH6, BRCA1, BRCA2). Displayed CT antigen proteins were

0% of samples.
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homogeneous NAT populations to be completely distinct (Fig-

ures 7A and S7A). Enrichment analysis of differential protein

abundance betweenpaired tumor andNAT samples (Figure S7B;

Table S7) revealed that tumorigenic processes including cell cy-

cle progression, MYC targets and glycolysis were upregulated in

tumor samples (FDR < 0.001) (Figure S7C; Table S7). We

observed 70 phosphosites (31 up, 39 down) and 11 acetyl-sites

(10 up, 1 down) for which abundance in tumorswasmarkedly dif-

ferential relative to associated protein expression, indicating a

change in site stoichiometry (Table S7). NPM1 T199 showed

the highest level of phosphorylation in tumors (log2 FC > 5,

FDR < 0.01); phosphorylation of the T199 residue is known to

be critical for NPM1-mediated DNA damage repair (Table S7)

(Koike et al., 2010). Of note, proliferation marker MKI67 phos-

phorylation was dramatically upregulated in tumors (log2 FC >

5) relative to its protein abundance (log2 FC < 2) (Figure 7B). Ace-

tylsite regulation included hyper-acetylation of the EP300 sub-

strate, Histone 2B (HIST1H2BA K22/K25, log2 FC > 4–5) (Wei-

nert et al., 2018). Interestingly, we also observed significant

acetylation of EP300 K1558 (log 2 FC > 4), a key acetylation

site in the protein activation loop that may be indicative of its ac-

tivity (Thompson et al., 2004). HIBCH, associated with valine

metabolism, was the only protein distinctly hypoacetylated in

tumors (K358; log2 FC < �4).

Deep proteogenomics characterization of LUAD tumors and

paired NATs also provided a powerful dataset to nominate candi-

date biomarkers. Using stringent cutoffs for quantitative differ-

ence, significance, and consistency (log2 FC > 2, FDR < 0.01,

and differential in R 90% of all tumor-NAT pairs), we identified

289 proteins upregulated at the protein level (Table S7). The po-

tential clinical utility of these protein markers is annotated in Fig-

ure S7D, with orthogonal support provided by the proportions of

tumors in the Human Protein Atlas (HPA) showing high, medium,

or low IHC staining. Sixty of these proteins (Figure S7D; Pan-

LUAD)were also significantly differential at the RNA level, of which

five (GFPT1, BZW2, PDIA4, P4HB, PMM2) were upregulated in all

tumor samples compared to their paired NATs, extending data

implicating these metabolic enzymes in cancer (Chen et al.,

2002; Tufo et al., 2014; Yang et al., 2016). Gremlin 1 (GREM1) pro-

tein, highly overexpressed in tumors (log2 FC > 5, FDR < 0.01) in

our study, is a known marker of poor prognosis in lung cancer

(Mulvihill et al., 2012) and implicated in EMT and metastasis pro-

cesses (Figure S7D; Table S7) (Cleynen et al., 2007; Friedman

et al., 2004; Tang et al., 2019). Ovarian cancer immunoreactive an-

tigen domain containing 2 (OCIAD2), highly overexpressed in tu-

mors (log2 FC > 4, FDR < 0.01), is a known poor prognosis marker

(Sakashita et al., 2018), as are stress-related marker candidates

DHFR, HYOU1, LDHA, and CBX8 (Fahrmann et al., 2016; Lladó

et al., 2009; Takei et al., 2017). Significantly hyperphosphorylated

and hyperacetylated sites are described in Table S7. Although

only a few among these marker candidates are currently targeted

by therapeutics in clinical trials, their strong and consistent differ-

ential expression and associations with lung cancer biology and

decreased survival support potential utility in early detection and

prognostic stratification (Kim et al., 2018a; Mulvihill et al., 2012;

Sakashita et al., 2018; Wang et al., 2015).

We also explored mutation-specific tumor-NAT differential

expression in TP53, EGFR, KRAS, and STK11 mutant pheno-
216 Cell 182, 200–225, July 9, 2020
types (Figures 7C and S7D; Table S7). Patients with TP53mutant

tumors show high expression of TP53, CCNA2, TOP2A, PLOD2,

ANLN, andMMP12 (Figure 7C), all shown to have roles in tumor-

igenesis (Chen et al., 2015; Hosgood et al., 2008; Konofaos et al.,

2013; Qu et al., 2009; Song et al., 2013). The observed elevated

CDK1 and CCNB1 protein expression and CDK1 phosphoryla-

tion in TP53 mutants have been associated with resistance in

preclinical models modulated by p53 status (Schwermer et al.,

2015). Significant overexpression of the proto-oncogene MET

was noted in EGFR mutants. Extracellular glycoproteins, colla-

gens, and enzymes were enriched in KRAS mutant tumors, as

were the well-described KRAS-associated chemokine CXCL8

and immune target THY1 (Sunaga et al., 2012).STK11mutant tu-

mors were enriched for amino acid metabolism proteins, which

are associatedwith nitric oxidemetabolic processes, suggesting

perturbation of the urea cycle in the context of STK11 mutation

(Kim et al., 2017; Lam et al., 2019).

Phosphosite-specific pathway analyses (Krug et al., 2018)

of the entire population of tumor/NAT pairs showed upregu-

lated phosphosite-driven signatures chiefly of checkpoint

control and cell cycle progression in tumors (Figure 7D; Table

S7) compared to extracellular matrix-focused signatures in

paired NATs. Phosphosite-driven signatures that were differ-

ential between NATs and paired tumors with EGFR (n = 38) or

KRAS (n = 33) mutations yielded near-mirror image plots (Fig-

ure 7D; Table S7). KRAS mutant tumors showed site-driven

activation of pathways downstream of RAS, including

MAPK1, as well as of TAK1, the hub at which IL-1, TGF-b,

and Wnt signaling pathways converge (Santoro et al., 2017).

Pathways upregulated in EGFR mutant tumors included

ROCK1, a Rho-associated protein kinase that has been

shown to enhance EGFR activation in some cancer types (Na-

kashima et al., 2011).

Cancer testis (CT) antigens and tumor neoantigens can serve

both diagnostic and therapeutic roles, including as targets for

potential cancer vaccines. Of 44 CT antigens recurrently over-

expressed in tumors (fold change R 2), 9 were observed in

R10% of samples (Figure 7F). KIF2C was the most ubiquitous,

being highly expressed in 63% of samples. Seven of these 9

common CT antigens have been previously associated with

lung cancer (Bai et al., 2019; Lei et al., 2015; Loriot et al.,

2003; Scanlan et al., 2000; Xie et al., 2018; Zhao et al., 2017),

although their specific roles in tumorigenesis and progression

are unclear. IGF2BP3 is associated with tumor progression

and poor prognosis in colorectal, lung, and hepatocellular car-

cinomas (Jiang et al., 2008; Lochhead et al., 2012; Xu et al.,

2012), whereas AKAP4 has been proposed to be a potential

biomarker in NSCLC (Loriot et al., 2003). To our knowledge,

MORC1 and NUF2 are novel CT antigens in LUAD tumors,

covering 38% and 16% of patients, respectively. To identify

additional predicted tumor neoantigens, we also searched for

both RNA transcripts and peptides containing evidence of so-

matic mutations. We identified a total of 2,481 mRNA-validated

and 49 peptide-validated somatic mutations, corresponding to

104 patients (Figure 7F; Table S7). Overall, 97 samples had ev-

idence of either CT antigens or neoantigens, holding promise

for the future of immunotherapy-based approaches to LUAD

management.
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DISCUSSION

In this study, we report comprehensive proteogenomic charac-

terization of 110 LUAD tumors and 101 matched NATs. Unlike

TCGA, which included primarily smoking-related LUAD, our

cohort included roughly equal numbers of current or former

smokers and never-smokers, as well as a geographically diverse

population. Multi-omics unsupervised clustering showed that

previously described terminal respiratory unit and proximal-in-

flammatory clusters translate to the protein level, whereas prox-

imal-proliferative samples showed substructure based on TP53

status and place of origin. miRNA taxonomy included clusters

enriched for STK11 mutant and ALK fusion-driven tumors. We

observed consistent differential phosphorylation of ALK Y1507

in samples with ALK fusion, in addition to multiple other proteins

exclusively regulated at the level of phosphoproteome, under-

scoring their likely relevance to ALK-associated biology.

The inclusion of deep-scale proteomic and PTMdata allowed

us to track the downstream signaling consequences of

epigenetic and genomic alterations and identify putative

methylation cis effects and a novel KEAP1/NFE2L2 regulatory

mechanism. Extreme phosphorylation events implied thera-

peutic possibilities including SOS1 inhibition in KRAS mutant

and PTPN11/Shp2 inhibition in both ALK fusion and EGFR

mutant tumors, the latter amenable to inhibitors already in clin-

ical trials. We also systematically identified and annotated

outlier kinases, some unique to major mutational subtypes,

many of which have known inhibitors or appear to be drug-

gable. Outliers were predominantly phosphorylation events,

reinforcing the value of post-translational modification analysis.

Paired tumor-NAT analysis illuminated elements of oncogen-

esis and nominated biomarker candidates and potential drug

development targets.

Integrated proteogenomics further allowed extensive char-

acterization of the immune landscape of LUADs and identifi-

cation of a number of potential therapeutic vulnerabilities,

including anti-CTLA4 therapy and IDO1 inhibition in immune-

hot tumors. We highlighted the particular association of

STK11 mutation with immune-cold behavior and implicated

neutrophil degranulation as a potential immunosuppressive

mechanism in STK11 mutant LUAD evident only in the prote-

omics space. The combination of proteogenomic data,

balanced representation of smokers and never-smokers, and

paired tumor-NAT analyses enabled us to capture the impact

of cancerization in both tumors and adjacent tissues and high-

lighted a potential oncogenic mechanism centered on AR-

GHEF5 in never-smokers.

There are inherent limitations to a study of this type. The interde-

pendence of variables including mutational status, ethnicity or ge-

ography, gender, and smoking status require that comparisons

based on any one of these be interpreted with caution. Further-

more, given the large number of confounders, efforts to adjust for

this by linear modeling may not be effective in a dataset of this

size, frustratingassociationanalysessuchas forgenderandsmok-

ingeffects.Thiseffort shareswithall bulk tumoranalyses the lackof

spatial and cellular resolution that might add orthogonal insights

into tumor biology, such as by disambiguating the contributions

of tumor epithelium and microenvironment. Approaches geared
tomore spatially resolved proteogenomics, such aswe and others

have recently described (Hunt et al., 2019; Satpathy et al., 2020), or

integration of single-cell genomics and proteomics might add

nuance to our understanding of crosstalk between tumor and the

microenvironment or of tumor evolution.Most importantly, associ-

ationsof thesort described throughout thismanuscriptarehypoth-

esis generating and generally cannot be understood as providing

firm biological conclusions. The integration of deep-scale proteo-

mic and PTM data nevertheless represents a substantial advance

over prior genomics studies of LUAD, and, paired with microscal-

ing methods (Satpathy et al., 2020), points the way to improved

characterization of clinical cohorts. We hope that both the specific

observations and hypotheses delineated in this manuscript, and

the data that underlie them, will be a rich resource for those inves-

tigating LUAD and for the larger research community, including for

the development of targeted chemo- or immuno-therapies.
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Klein-Hitpass, L., Möröy, T., Mössner, J., and Engeland, K. (2004). Identifica-

tion of Tcf-4 as a transcriptional target of p53 signalling. Oncogene 23,

3376–3384.

Roy, M.G., Livraghi-Butrico, A., Fletcher, A.A., McElwee, M.M., Evans, S.E.,

Boerner, R.M., Alexander, S.N., Bellinghausen, L.K., Song, A.S., Petrova,

Y.M., et al. (2014). Muc5b is required for airway defence. Nature 505, 412–416.

Ruggles, K.V., Tang, Z., Wang, X., Grover, H., Askenazi, M., Teubl, J., Cao, S.,

McLellan, M.D., Clauser, K.R., Tabb, D.L., et al. (2016). An Analysis of the

Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel

Splicing Events in Cancer. Mol. Cell. Proteomics 15, 1060–1071.

Sakashita, M., Sakashita, S., Murata, Y., Shiba-Ishii, A., Kim, Y., Matsuoka, R.,

Nakano, N., Sato, Y., and Noguchi, M. (2018). High expression of ovarian can-

cer immunoreactive antigen domain containing 2 (OCIAD2) is associated with

poor prognosis in lung adenocarcinoma. Pathol. Int. 68, 596–604.

Salerno, E.P., Bedognetti, D., Mauldin, I.S., Deacon, D.H., Shea, S.M., Pinc-

zewski, J., Obeid, J.M., Coukos, G., Wang, E., Gajewski, T.F., et al. (2016). Hu-

man melanomas and ovarian cancers overexpressing mechanical barrier
molecule genes lack immune signatures and have increased patient mortality

risk. OncoImmunology 5, e1240857.

Salomonis, N., Dexheimer, P.J., Omberg, L., Schroll, R., Bush, S., Huo, J.,

Schriml, L., Ho Sui, S., Keddache, M., Mayhew, C., et al. (2016). Integrated

Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progen-

itor Cell Biology Consortium. Stem Cell Reports 7, 110–125.

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W.K., Luna, A., La, K.C., Di-

mitriadoy, S., Liu, D.L., Kantheti, H.S., Saghafinia, S., et al.; Cancer Genome

Atlas Research Network (2018). Oncogenic Signaling Pathways in The Cancer

Genome Atlas. Cell 173, 321–337.e10.

Santoro, R., Carbone, C., Piro, G., Chiao, P.J., and Melisi, D. (2017). TAK-ing

aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer

therapy. Drug Resist. Updat. 33-35, 36–42.

Satpathy, S., Jaehnig, E.J., Krug, K., Kim, B.-J., Saltzman, A.B., Chan, D.W.,

Holloway, K.R., Anurag, M., Huang, C., Singh, P., et al. (2020). Microscaled

proteogenomic methods for precision oncology. Nat. Commun. 11, 532.

Saunders, C.T., Wong, W.S.W., Swamy, S., Becq, J., Murray, L.J., and Chee-

tham, R.K. (2012). Strelka: accurate somatic small-variant calling from

sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817.

Scanlan, M.J., Altorki, N.K., Gure, A.O., Williamson, B., Jungbluth, A., Chen,

Y.T., and Old, L.J. (2000). Expression of cancer-testis antigens in lung cancer:

definition of bromodomain testis-specific gene (BRDT) as a newCT gene, CT9.

Cancer Lett. 150, 155–164.

Schneeberger, V.E., Ren, Y., Luetteke, N., Huang, Q., Chen, L., Lawrence,

H.R., Lawrence, N.J., Haura, E.B., Koomen, J.M., Coppola, D., and Wu, J.

(2015). Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in

transgenic mouse model of lung adenocarcinoma. Oncotarget 6, 6191–6202.
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Antibodies

Mouse monoclonal anti-CD8 (C8/144B) Cellmarque Catalog #108M; RRID:AB_1158205

Rabbit monoclonal anti-CD4 (SP35) Roche Catalog #790-4423; RRID:AB_2335982

Liquid Concentrated Monoclonal Antibody

anti-CD163

Leica Biosystems Catalog #NCL-L-163; RRID:AB_2756375

PTMScan Acetyl-lysine Kit Cell Signaling Technology Catalog: 13416

Biological Samples

Primary tumor samples See Experimental Model and Subject

Details

N/A

Chemicals and Reagents

HPLC-grade water J.T. Baker Catalog: 4218-03

Urea Sigma Catalog: U0631

Sodium chloride Sigma Catalog: 71376

1M Tris, pH 8.0 Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 78830

Sodium fluoride Sigma Catalog: S7920

Phosphatase inhibitor cocktail 2 Sigma Catalog: P5726

Phosphatase inhibitor cocktail 3 Sigma Catalog: P0044

Dithiothretiol, No-Weigh Format Fisher Scientific Catalog: 20291

Iodoacetamide Sigma Catalog: A3221

Lysyl endopeptidase Wako Chemicals Catalog: 129-02541

Sequencing-grade modified trypsin Promega Catalog: V511X

Formic acid Sigma Catalog: F0507

Acetonitrile Honeywell Catalog: 34967

Trifluoroacetic acid Sigma Catalog: 302031

Tandem Mass Tag reagent kit – 11plex ThermoFisher Catalog: A34808

0.5M HEPES, pH 8.5 Alfa Aesar Catalog: J63218

Hydroxylamine solution, 50% (vol/vol)

in H2O

Aldrich Catalog: 467804

Methanol Honeywell Catalog: 34966

Ammonium hydroxide solution, 28% (wt/

vol) in H2O

Sigma Catalog: 338818

Ni-NTA agarose beads QIAGEN Catalog: 30410

Iron (III) chloride Sigma Catalog: 451649

Acetic acid, glacial Sigma Catalog: AX0073

Potassium phosphate, monobasic Sigma Catalog: P0662

Potassium phosphate, dibasic Sigma Catalog: P3786

MOPS Sigma Catalog: M5162

Sodium hydroxide VWR Catalog: BDH7225

Sodium phosphate, dibasic Sigma Catalog: S9763

Phosphate-buffered saline Fisher Scientific Catalog: 10010023

iVIEW DAB Detection Kit Roche Catalog: 760-091

(Continued on next page)

e1 Cell 182, 200–225.e1–e22, July 9, 2020



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Equipment

Reversed-phase tC18 SepPak, 3cc 200mg Waters Catalog: WAT054925

Solid-phase C18 disk, for Stage-tips Empore Catalog: 66883-U

Stage-tip needle Cadence Catalog: 7928

Stage-tip puncher, PEEK tubing Idex Health & Science Catalog: 1581

PicoFrit LC-MS column New Objective Catalog: PF360-75-10-N-5

ReproSil-Pur, 120 Å, C18-AQ, 1.9-mm resin Dr. Maisch Catalog: r119.aq

Nanospray column heater Phoenix S&T Catalog: PST-CH-20U

Column heater controller Phoenix S&T Catalog: PST-CHC

300 mL LC-MS autosampler vial and cap Waters Catalog: 186002639

Offline HPLC column, 3.5-mm particle size,

4.6 um 3 250 mm

Agilent Catalog: Custom order

Offline 96-well fractionation plate Whatman Catalog: 77015200

700 mL bRP fractionation autosampler vial ThermoFisher Catalog: C4010-14

700 mL bRP fractionation autosampler cap ThermoFisher Catalog: C4010-55A

96-well microplate for BCA Greiner Catalog: 655101

Microplate foil cover Corning Catalog: PCR-AS-200

Vacuum centrifuge ThermoFisher Catalog: SPD121P-115

Centrifuge Eppendorf Catalog: 5427 R

Benchtop mini centrifuge Corning Catalog: 6765

Benchtop vortex Scientific Industries Catalog: SI-0236

Incubating shaker VWR Catalog: 12620-942

15 mL centrifuge tube Corning Catalog: 352097

50 mL centrifuge tube Corning Catalog: 352070

1.5 mL microtube w/o cap Sarstedt Catalog: 72.607

2.0 mL microtube w/o cap Sarstedt Catalog: 72.608

Microtube caps Sarstedt Catalog: 72.692

1.5 mL snapcap tube ThermoFisher Catalog: AM12450

2.0 mL snapcap tube ThermoFisher Catalog: AM12475

Instrumentation

Microplate Reader Molecular Devices Catalog: M2

Offline HPLC System for bRP fractionation Agilent 1260 Catalog: G1380-90000

Online LC for LC-MS ThermoFisher Catalog: LC140

Q Exactive Plus Mass Spectrometer ThermoFisher Catalog: IQLAAEGA

APFALGMBDK

Q Exactive HF-X Mass Spectrometer ThermoFisher Catalog: 0726042

Orbitrap Fusion Lumos Tribrid Mass

Spectrometer

ThermoFisher Catalog: IQLAAEGA

APFADBMBHQ

Critical Commercial Assays

TruSeq Stranded Total RNA Library Prep Kit

with Ribo-Zero Gold

Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Catalog: 23225

Deposited Data

PhosphoSitePlus (Hornbeck et al., 2012) https://www.phosphosite.org

Connectivity Map (CMAP) (Lamb et al., 2006; Subramanian

et al., 2017)

https://www.broadinstitute.org/

connectivity-map-cmap

(Continued on next page)
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Human Protein Atlas (HPA) (Uhlén et al., 2005) https://www.proteinatlas.org

CT Antigen database (Almeida et al., 2009) http://www.cta.lncc.br

Software and Algorithms

methylationArrayAnalysis (version 3.9) (Maksimovic et al., 2016) https://master.bioconductor.org/

packages/release/workflows/html/

methylationArrayAnalysis.html

Illumina EPIC methylation array (3.9) Hansen, 2019 https://bioconductor.org/packages/

release/data/annotation/html/

IlluminaHumanMethylationEPICanno.

ilm10b2.hg19.html

Methylation array analysis pipeline

for CPTAC

Li Ding Lab https://github.com/ding-lab/

cptac_methylation

miRNA-Seq analysis pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/

CPTAC_miRNA

Somatic variant calling pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/

somaticwrapper

VarDict (Lai et al., 2016) https://github.com/AstraZeneca-NGS/

VarDict

Strelka2 (Kim et al., 2018b) https://github.com/Illumina/strelka

MUTECT1.1.7 (Cibulskis et al., 2013) https://software.broadinstitute.org/gatk/

download/archive

VarScan2.3.8 (Koboldt et al., 2012) http://varscan.sourceforge.net

Pindel0.2.5 (Ye et al., 2009) http://gmt.genome.wustl.edu/packages/

pindel/

SignatureAnalyzer (Kim et al., 2016) https://software.broadinstitute.org/cancer/

cga/msp

Fusion calling pipeline for CPTAC Li Ding Lab https://github.com/cuidaniel/Fusion_hg38

CNVEX Marcin Cieslik Lab https://github.com/mctp/cnvex

CRISP Marcin Cieslik Lab https://github.com/mcieslik-mctp/

crisp-build

Spectrum Mill Karl R. Clauser, Steven Carr Lab https://proteomics.broadinstitute.org/

ComBat (v3.20.0) (Johnson et al., 2007) https://bioconductor.org/packages/

release/bioc/html/sva.html

DreamAI Pei Wang Lab https://github.com/WangLab-MSSM/

DreamAI

GISTIC2.0 (Mermel et al., 2011) ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

GISTIC_2_0_23.tar.gz

iProFun (Song et al., 2019) https://github.com/WangLab-MSSM/

iProFun

ESTIMATE (Yoshihara et al., 2013) https://bioinformatics.mdanderson.org/

public-software/estimate/

WebGestaltR (Wang et al., 2017) http://www.webgestalt.org/

Joint Random Forest (Petralia et al., 2016) https://github.com/WangLab-MSSM/

ptmJRF

GSVA (Hänzelmann et al., 2013) https://bioconductor.org/packages/

release/bioc/html/GSVA.html

TCGAbiolinks (Colaprico et al., 2016) http://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

TSNet (Petralia et al., 2018) https://github.com/

WangLab-MSSM/TSNet

xCell (Aran et al., 2017) https://xcell.ucsf.edu/

(Continued on next page)
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CPTAC LUAD Data Viewer Steven Carr lab http://prot-shiny-vm.broadinstitute.

org:3838/CPTAC-LUAD2020/

MODMatcher (Yoo et al., 2014) https://github.com/

integrativenetworkbiology/Modmatcher

ConsensusClusterPlus (Wilkerson and Hayes, 2010) http://bioconductor.org/packages/release/

bioc/html/CancerSubtypes.html

pyQUILTS (v1.0) (Ruggles et al., 2016) http://openslice.fenyolab.org/cgi-bin/

pyquilts_cgi.pl

MS-GF+ (Kim and Pevzner, 2014) https://github.com/MSGFPlus/msgfplus

NeoFlow Bing Zhang lab https://github.com/bzhanglab/neoflow

netMHCpan (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/

NetMHCpan/

Optitype (Szolek et al., 2014) https://github.com/FRED-2/OptiType

Customprodbj (Wang and Zhang, 2013) https://github.com/bzhanglab/

customprodbj

PDV (Li et al., 2019) https://github.com/wenbostar/PDV

PepQuery (Wen et al., 2019) http://pepquery.org

PTM-SEA (Krug et al., 2018) https://github.com/broadinstitute/

ssGSEA2.0

Terra Broad Institute data science platform. https://terra.bio/

CMap (Lamb et al., 2006; Subramanian

et al., 2017)

https://clue.io/cmap

PTM-SEA (Krug et al., 2018) https://github.com/broadinstitute/

ssGSEA2.0

LIMMA v3.36 (R Package) (Ritchie et al., 2015) https://bioconductor.org/packages/

release/bioc/html/limma.html

FactoMineR v1.41NMF (R -package) (Gaujoux and Seoighe, 2010; Lê et al., 2008) https://cran.r-project.org/web/packages/

FactoMineR/index.html

MClust v5.4 (R package) (Scrucca, Fop, Murphy and Raftery, 2016) https://cran.r-project.org/web/packages/

mclust/index.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests should be directed to and will be fulfilled by the lead author, M.A.G. (gillette@broadinstitute.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Proteomics raw datasets are publicly available though the CPTAC data portal https://cptac-data-portal.georgetown.edu/cptac/s/

S056. Genomic and transcriptomic data files can be accessed at the Genomic Data Commons (GDC); https://portal.gdc.cancer.

gov/, via dbGaP Study Accession: phs001287.v5.p4 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs001287.v5.p4. Sample annotation, processed and normalized data files are provided as Tables S1–S3. Software and code

used in this study are referenced in their corresponding STAR Method sections and also the Key Resource Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
A total of 111 participants (73 males, 38 females, 35-81 years old) were included in this study, collected by 13 different tissue source

sites from 8 different countries (Table S1). Only histopathologically-defined adult lung adenocarcinoma tumors were considered for

analysis, with an age range of 35-81. Institutional review boards at tissue source sites, reviewed protocols and consent documen-

tation adhering to the Clinical Proteomic Tumor Analysis Consortium (CPTAC) guidelines.
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Clinical Data Annotation
Clinical data were obtained from tissue source sites and aggregated by an internal database called the CDR (Comprehensive Data

Resource) that synchronizes with the CPTACDCC. Clinical data can be accessed and downloaded from the DCC (Data Coordinating

Center) at https://cptac-data-portal.georgetown.edu/cptac/s/S046. Demographics, histopathologic information, and treatment de-

tails were collected. LUAD histopathology was confirmed for all cases by at least 2 expert pathologists based on high resolution im-

ages of H&E sections. All histologic https://www.cancerimagingarchive.net/datascope/cptac/home/ and radiologic https://public.

cancerimagingarchive.net/nbia-search/ details can be accessed from the listed webportals. The genotypic, clinical, geographical

and other associated metadata is summarized in Table S1.

METHOD DETAILS

Specimen Acquisition
The tumor, normal adjacent tissue (NAT), and whole blood samples used in this manuscript were prospectively collected for the

CPTAC project. Biospecimens were collected from newly diagnosed patients with LUAD who underwent surgical resection and

had received no prior treatment for their disease, including chemotherapy or radiotherapy. All cases had to be of acceptable

LUAD histology but were collected regardless of surgical stage or histologic grade. Cases were staged using the AJCC cancer stag-

ing system 7th edition (Edge and Compton, 2010). The tumor specimen weights ranged from 125 to 715mg. The average tissuemass

was 238 mg. For most cases, three to four tumor specimens were collected. Paired histologically-normal adjacent lung tissues

(NATs) were collected from the same patient at tumor resection. Each tissue specimen endured cold ischemia for less than

40 min prior to freezing in liquid nitrogen; the average ischemic time was 13 min from resection/collection to freezing. Specimens

were either flash frozen in liquid nitrogen or embedded in optimal cutting temperature (OCT) medium. Histologic sections obtained

from top and bottom portions from each case were reviewed by a board-certified pathologist to confirm the assigned pathology. For

samples to be deemed acceptable, the top and bottom sections had to contain an average of 50% tumor cell nuclei with less than

20% necrosis. Specimens were shipped overnight from the tissue source sites to the biospecimen core resource (BCR) located at

Van Andel Research Institute, Grand Rapids, MI using a cryoport that maintained an average temperature of less than�140�C. At the
biospecimen core resource, specimens were confirmed for pathology qualification and prepared for genomic, transcriptomic, and

proteomic analyses. Selected specimens were cryopulverized using a Covaris CryoPREP instrument and material aliquoted for sub-

sequent molecular characterization. Genomic DNA and total RNA were extracted and sent to the genome sequencing centers. The

whole exome and whole genome DNA sequencing andmethylation EPIC array analyses were performed at the Broad Institute, Cam-

bridge, MA and RNA and miRNA sequencing was performed at the University of North Carolina, Chapel Hill, NC. Material for prote-

omic analyses were sent to the Proteomic Characterization Center (PCC) at the Broad Institute, Cambridge, MA.

Sequencing sample preparation
Our study sampled a single site of the primary tumor from surgical resections, with an internal requirement to process a minimum of

125mg of tumor issue and 50mg of NAT. DNA and RNA were extracted from tumor and NAT specimens in a co-isolation protocol

using QIAGEN’s QIAsymphony DNA Mini Kit and QIAsymphony RNA Kit. Genomic DNA was also isolated from peripheral blood

(3-5mL) to serve as matched normal reference material. The Qubit dsDNA BR Assay Kit was used with the Qubit� 2.0 Fluorimeter

to determine the concentration of dsDNA in an aqueous solution. Any sample that passed quality control and produced enough

DNA yield to go through the multiple planned genomic assays was sent for genomic characterization. RNA quality was quantified

using the NanoDrop 8000 and quality assessed using an Agilent Bioanalyzer. A sample of sufficient quantity that passed RNA quality

control and had a minimum RIN (RNA integrity number) score of 7 was subjected to RNA sequencing. Identity matches for germline,

normal adjacent tissue, and tumor tissue were confirmed at the BCR using the Illumina Infinium QC array. This beadchip contains

15,949 markers designed to prioritize sample tracking, quality control, and stratification.

Whole Exome Sequencing (WES)
Library construction and Hybrid Selection

Library construction was performed as described in (Fisher et al., 2011), with the following modifications: initial genomic DNA input

into shearingwas reduced from 3mg to 20-250ng in 50mL of solution. For adaptor ligation, Illumina paired-end adapters were replaced

with palindromic forked adapters, purchased from Integrated DNA Technologies (IDT), with unique dual-indexed molecular barcode

sequences to facilitate downstream pooling. Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A-tailing,

adaptor ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI cleanup, elution volume was reduced to

30mL to maximize library concentration, and a vortexing step was added to maximize the amount of template eluted. After library

construction, libraries were pooled into groups of up to 96 samples. Hybridization and capture were performed using the relevant

components of Illumina’s Nextera Exome Kit and following the manufacturer’s suggested protocol, with the following exceptions:

First, all libraries within a library construction plate were pooled prior to hybridization. Second, the Midi plate from Illumina’s Nextera

Exome Kit was replaced with a skirted PCR plate to facilitate automation. All hybridization and capture steps were automated on the

Agilent Bravo liquid handling system.
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Cluster Amplification and Sequencing

After post-capture enrichment, library pools were quantified using qPCR (KAPA Biosystems) using an automated assay on the Agi-

lent Bravo with probes specific to the ends of the adapters. Based on qPCR quantification, libraries were normalized to 2nM. Cluster

amplification of DNA libraries was performed followingmanufacturer’s protocol (Illumina) using exclusion amplification chemistry and

flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis chemistry. The flow cells were then analyzed using RTA

v.2.7.3 or later. Each pool of whole exome libraries was sequenced on paired 76-cycle runs with two 8-cycle index reads across

the number of lanes needed to meet coverage for all libraries in the pool. Pooled libraries were run on HiSeq4000 paired-end runs

to achieve a minimum of 150x on-target coverage per library. The raw Illumina sequence data were demultiplexed and converted

to FASTQ files; adaptor and low-quality sequences were trimmed. The raw reads were mapped to the GRCh38/hg38 human refer-

ence genome and the validated BAMs were used for downstream analysis and variant calling.

Whole Genome Sequencing (WGS)
Cluster Amplification and Sequencing

An aliquot of genomic DNA (350ng in 50mL) was used as the input into DNA fragmentation (aka shearing). Shearing was performed

acoustically using a Covaris focused-ultrasonicator, targeting 385bp fragments. Following fragmentation, additional size selection

was performed using SPRI cleanup. Library preparation was performed using a commercially available KAPA Hyper Prep without

amplification module kit (KAPA Biosystems) and with palindromic forked adapters with unique 8-base index sequences embedded

within the adaptor (IDT). Following sample preparation, libraries were quantified using quantitative PCR (KAPA Biosystems), with

probes specific to the ends of the adapters using the automated Agilent’s Bravo liquid handling platform. Based on qPCR quantifi-

cation, libraries were normalized to 1.7nM and pooled into 24-plexes.

Sample pools were combined with HiSeqX Cluster AmpReagents EPX1, EPX2, and EPX3 into single wells on a strip tube using the

Hamilton Starlet Liquid Handling system. Cluster amplification of the templates was performed according to the manufacturer’s pro-

tocol (Illumina) with the Illumina cBot. Flowcells were sequenced to a minimum of 15x on HiSeqX utilizing sequencing-by-synthesis

kits to produce 151bp paired-end reads. Output from Illumina softwarewas processed by the Picard data processing pipeline to yield

BAM files containing demultiplexed, aggregated, aligned reads. All sample information tracking was performed by automated LIMS

messaging.

Array Based Methylation Analysis
The Methylation EPIC array uses an 8-sample version of the Illumina Beadchip capturing > 850,000 methylation sites per sample.

Two hundred and fifty nanograms of DNA was used for the bisulfite conversion using Infinium MethylationEPIC BeadChip Kit (Illu-

mina). The EPIC array includes sample plating, bisulfite conversion, and methylation array processing. After scanning, the data

was processed through an automated genotype-calling pipeline. Data output consisted of raw idats and a sample sheet.

RNA and miRNA sequencing
Quality Assurance and Control of RNA Analytes

All RNA analytes were assayed for RNA integrity, concentration, and fragment size. Samples for total RNA-seq were quantified on a

TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs > 7.0 were considered high quality and were considered for

sequencing.

Total RNA-seq libraries were generated using 300 nanograms of total RNA using the TruSeq Stranded Total RNA Library Prep Kit

with Ribo-Zero Gold and bar-coded with individual tags following themanufacturer’s instructions (Illumina). Total RNA Libraries were

prepared on an Agilent Bravo automated liquid handling system. Quality control was performed at every step, and the libraries were

quantified using a TapeStation system.

Total RNA Sequencing

Indexed libraries were prepared and run on HiSeq4000 paired-end 75 base pairs to generate a minimum of 120 million reads per

sample library with a target of greater than 90%mapped reads. The raw Illumina sequence data were demultiplexed and converted

to FASTQ files, and adaptor and low-quality sequences were trimmed. Samples were then assessed for quality by mapping reads to

GRCh38/hg38, estimating the total number of mapped reads, amount of RNA mapping to coding regions, amount of rRNA in the

sample, number of genes expressed, and relative expression of housekeeping genes. Samples passing this QA/QC were then clus-

tered with other expression data from similar and distinct tumor types to confirm expected expression patterns. Atypical samples

were then SNP typed from the RNA data to confirm source analyte. FASTQ files of all reads were then uploaded to the GDC

repository.

miRNA-seq Library Construction

miRNA-seq library construction was performed from the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Wal-

tham, MA) and barcoded with individual tags following the manufacturer’s instructions. Libraries were prepared on a Sciclone Liquid

HandlingWorkstation. Quality control was performed at every step, and the libraries were quantified using a TapeStation system and

an Agilent Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected according to NEXTflex kit specifi-

cations using a Pippin Prep system (Sage Science, Beverly, MA).
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miRNA Sequencing

Indexed libraries were loaded on the HiSeq4000 to generate a minimum of 10 million reads per library with a minimum of 90% reads

mapped. The raw Illumina sequence data were demultiplexed and converted to FASTQ files for downstream analysis. Resultant data

were analyzed using a variant of the small RNA quantification pipeline developed for TCGA (Chu et al., 2016). Data from samples were

assessed for the number of miRNAs called, species diversity, and total abundance before uploading to the GDC repository.

Mass Spectrometry methods
The protocols below for protein extraction, tryptic digestion, TMT-10 labeling of peptides, peptide fractionation by basic reversed-

phase liquid chromatography, phosphopeptide enrichment using immobilized metal affinity chromatography, and LC-MS/MS were

performed as previously described in depth (Mertins et al., 2018). Acetyl-enrichment was performed as described before (Svinkina

et al., 2015; Udeshi et al., 2020) with modifications as indicated below.

Protein Extraction and Tryptic Digestion

Fiftymilligrams (wet weight) of cryopulverized human LUAD andNAT samples were homogenized in lysis buffer at a ratio of about 200

uL lysis buffer for every 50mgwet weight tissue. The lysis buffer consisted of 8M urea, 75mMNaCl, 1mMEDTA, 50mMTris HCl (pH

8), 10 mM NaF, phosphatase inhibitor cocktail 2 (1:100; Sigma, P5726) and cocktail 3 (1:100; Sigma, P0044), 2 mg/mL aprotinin

(Sigma, A6103), 10 mg/mL leupeptin (Roche, 11017101001), and 1 mM PMSF (Sigma, 78830). Lysates were centrifuged at

20,000 g for 10 min and protein concentrations of the clarified lysates were measured by BCA assay (Pierce). Protein lysates

were subsequently reduced with 5 mM dithiothreitol (Thermo Scientific, 20291) for an h at 37C and alkylated with 10 mM iodoace-

tamide (Sigma, A3221) for 45min in the dark at room temperature. Prior to digestion, samples were diluted 4-fold to achieve 2M urea

with 50mM Tris HCl (pH 8). Digestion was performed with LysC (Wako, 100369-826) for 2 h and with trypsin (Promega, V511X) over-

night, both at a 1:50 enzyme-to-protein ratio and at room temperature. Digested samples were acidified with formic acid (FA; Fluka,

56302) to achieve a final volumetric concentration of 1% (final pH of �3), and centrifuged at 1,500 g for 15 min to clear precipitated

urea from peptide lysates. Samples were desalted on C18 SepPak columns (Waters, 100mg, WAT036820) and dried down using a

SpeedVac apparatus.

Construction of the Common Reference Pool

The proteomic and phosphoproteomic analyses of lung cancer samples were structured as TMT-10 plex experiments. To facilitate

quantitative comparison between all samples across experiments, a common reference (CR) sample was included in each 10-plex. A

common physical, rather than in silico reference was used for this purpose for optimal quantitative precision between TMT10-plex

experiments. Considerations prior to creating the reference sample were that this sample needed to be of adequate quantity to cover

all planned experiments for both the current ‘‘discovery’’ and future ‘‘confirmatory’’ sets with overhead for additional possible exper-

iments. The CR includes nearly all the samples analyzed in the TMT experiments, yielding an internal reference that is representative

of all the samples in the study. Making the CR as representative of the study as a whole was particularly important since, by definition,

only analytes represented in the reference sample would be included in the final ratio-based data analyses.

111 unique tumor samples with 102 paired NAT samples were distributed among 25 10-plex experiments, with 9 individual sam-

ples occupying the first 9 channels of each experiment and the 10th channel being reserved for the CR sample. The first 8 channels of

each experiment contained 4 tumor/NAT pairs, with each pair of patient samples adjacent to each other. All the tumors were in the C

channels and all the NAT samples were in the N channels. Of the 25 130C channels, 9 contained unpaired tumors, 4 contained tumor-

only CRs, 4 had NAT-only CRs, 2 were LUAD-derived CRs from a separate study (Taiwan ICPC LUAD study, co-published in this

issue of Cell), 2 were replicate tumor samples, and 4 samples were 2 tumor/NAT paired patients, split for the purpose of confirming

high-fidelity replication in the project.

To ensure capacity for additional experiments given a target input of 300 mg protein per channel per experiment, 30 mg total was

targeted for reference material. To meet these collective requirements, after reserving 300 mg peptide / sample for individual sample

analysis, an additional 150 mg for each sample with adequate remaining quantity was used for pooled CR generation. In total, 203

samples were selected for the combined tumor/NAT CR. To make the CR, tumor-only and NAT-only CRs were first created sepa-

rately. 103 tumor samples and 100 NAT samples contributed to their respective pooled reference samples. After creating individual

CRs, a pool of combined CR was made, consisting of 4.8 mg tumor-only reference and 4.8 mg NAT-only reference. The 9.6 mg

pooled reference material was divided into 300 mg aliquots and frozen at �80�C until use. 3.9 mg of tumor-only and 3.9 mg of

NAT-only reference pools were set aside for future combined tumor/NAT CR generation. The remaining tumor-only and NAT-only

references were aliquoted into 300 mg amounts, dried down, and stored at �80C for future use.

Construction and utilization of the CR Sample

As a quality control measure, two ‘‘comparative reference’’ (‘‘CompRef’’) samples were generated as previously described (Li et al.,

2013; Mertins et al., 2018) and used to monitor the longitudinal performance of the proteome, phosphoproteome, and

acetylproteome workflows throughout the course of the project. Briefly, patient-derived xenograft tumors from established basal

(WHIM2) and luminal-B (WHIM16) breast cancer intrinsic subtypes (Li et al., 2013) were raised subcutaneously in 8 week old

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) using procedures reviewed and approved by the

institutional animal care and use committee at Washington University in St. Louis. All PDX models are available through the applica-

tion to the Human and Mouse-Linked Evaluation of Tumors core at https://digitalcommons.wustl.edu/hamlet/. Xenografts were

grown in multiple mice, pooled, and cryopulverized to provide a sufficient amount of material for the duration of the project. Using
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the same analysis protocol as for the patient samples, four proteome, phosphoproteome, and acetylproteome process replicates of

each of the two xenografts were prepared as described below and run as TMT 10-plex experiments (5 aliquots of each PDX model/

plex) at the beginning and end of the 25 patient plexes and interposed after patient plexes 8 and 16. Interstitial samples were eval-

uated for depth of coverage and for consistency in quantitative comparison between the basal and luminal models.

TMT-10 Labeling of Peptides

Desalted peptides, 300 mg per sample (based on peptide-level BCA after digestion), were labeled with 10-plex TMT reagents accord-

ing to the manufacturer’s instructions (Thermo Scientific; Pierce Biotechnology, Germany). For each 300 mg peptide aliquot of an in-

dividual tumor sample, 2.4mg of labeling reagent was used. Peptideswere dissolved in 300 mL of 50mMHEPES (pH 8.5) solution and

labeling reagent was added in 123 mL of acetonitrile. After 1 h incubation with shaking and after confirming good label incorporation,

24 mL of 5% hydroxylamine was added to quench the unreacted TMT reagents. Good label incorporation was defined as having a

minimum of 95% fully labeledMS/MS spectra in each sample, asmeasured by LC-MS/MS after taking out a 2.8 mg aliquot from each

sample and analyzing 1.25 mg. If a sample did not have sufficient label incorporation, additional TMT was added to the sample and

another 1 h incubation was performed with shaking. At the time that the labeling efficiency quality control samples were taken, an

additional 4 mg of material from each sample was removed and combined as amixing control. After analyzing themixing control sam-

ple by LC-MS/MS, intensity values of the individual TMT reporter ions were summed across all peptide-spectrum matches and

compared to ensure that the total reporter ion intensity of each sample met a threshold of ± 15% of the common reference. If neces-

sary, adjustments weremade by either labeling additional material or reducing an individual sample’s contribution to themixture, and

analyzing a subsequent mixing control, until all samples met the threshold and were thus approximately 1:1:1. Differentially labeled

peptides were then mixed (103 300 mg), dried down via vacuum centrifuge, and quenched, prior to desalting on a 200 mg C18 Sep-

Pak column.

Peptide Fractionation

To reduce sample complexity, peptide samples were separated by high-pH reversed-phase (RP) separation as described previously

(Mertins et al., 2018). A desalted 3 mg, 10-plex TMT-labeled experiment (based on protein-level BCA prior to digestion) was recon-

stituted in 900 mL 5mM ammonium formate (pH 10) and 2% acetonitrile, loaded on a 4.6 mm x 250mmRP Zorbax 300 A Extend-C18

column (Agilent, 3.5 mm bead size), and separated on an Agilent 1260 Series HPLC instrument using basic reversed-phase chroma-

tography. Solvent A (2% acetonitrile, 4.5 mM ammonium formate, pH 10) and a nonlinear increasing concentration of solvent B (90%

acetonitrile, 4.5 mM ammonium formate, pH 10) were used to separate peptides. The 4.5 mM ammonium formate solvents were

made by 40–fold dilution of a stock solution of 180 mM ammonium formate, pH 10. To make 1L of stock solution, 25 mL of 28%

(wt/vol) ammonium hydroxide (28%, density 0.9 g/mL, Sigma-Aldrich) was added to �850ml of HPLC grade water, then �35 mL

of 10% (vol/vol) formic acid (> 95% Sigma-Aldrich) was added to titrate the pH to 10.0 before bringing the final volume to 1 L with

HPLC-grade water. The 96-min separation LC gradient followed this profile: (min: %B) 0:0; 7:0; 13:16; 73:40; 77:44; 82:60; 96:60.

The flow rate was 1 mL/min. Per 3 mg separation, 82 fractions were collected into a 96 deep-well x 2mL plate (Whatman, #7701-

5200), with fractions combined in a stepwise non-contiguous concatenation strategy and acidified to a final concentration of

0.1% FA as reported previously. An additional 14 fractions were collected from the 96 deep-well plate for fraction A, consisting of

early-eluting fractions that tend to contain multi-phosphorylated peptides. 5% of the volume of each of the 24+A proteome fractions

was allocated for proteome analysis, dried down, and re-suspended in 3% MeCN/0.1% FA (MeCN; acetonitrile) to a peptide con-

centration of 0.25 mg/ mL for LC-MS/MS analysis. The remaining 95% of 24 concatenated fractions were further combined into 12

fractions, with fraction A as a separate fraction. These 13 fractions were then enriched for phosphopeptides as described below.

Phosphopeptide Enrichment

Ni-NTA agarose beads were used to prepare Fe3+-NTA agarose beads. In each phosphoproteome fraction, �237.5 mg peptides

(based on peptide-level BCA after digestion with uniformly distributed fractionation presumed) were reconstituted in 475 mL 80%

MeCN/0.1% TFA (trifluoroacetic acid) solvent and incubated with 10 mL of the IMAC beads for 30 min on a shaker at RT. After incu-

bation, samples were briefly spun down on a tabletop centrifuge; clarified peptide flow-throughs were separated from the beads; and

the beads were reconstituted in 200 mL IMAC binding/wash buffer (80 MeCN/0.1% TFA) and loaded onto equilibrated Empore C18

silica-packed stage tips (3M, 2315). Samples were then washed twice with 50 mL of IMAC binding/wash buffer and once with 50 uL

1% FA, and were eluted from the IMAC beads to the stage tips with 33 70 uL washes of 500 mM dibasic sodium phosphate (pH 7.0,

Sigma S9763). Stage tips were then washed once with 100 mL 1% FA and phosphopeptides were eluted from the stage tips with

60 mL 50%MeCN/0.1% FA. Phosphopeptides were dried down and re-suspended in 9 mL 50%MeCN/0.1%FA for LC-MS/MS anal-

ysis, where 4 mL was injected per run.

Acetylpeptide Enrichment

Acetylated lysine peptides were enriched using an antibody against the acetyl-lysine motif (CST PTM-SCAN Catalogue No. 13416).

IMAC eluents were concatenated into 4 fractions (�750 mg peptides per fraction) and dried down using a SpeedVac apparatus.

Peptideswere reconstitutedwith 1.4ml of IAP buffer (5mMMOPSpH7.2, 1mMSodiumPhosphate (dibasic), 5mMNaCl) per fraction

and incubated for 2 h at 4�Cwith pre-washed (4 times with IAP buffer) agarose beads bound to acetyl-lysine motif antibody. Peptide-

bound beads were washed 4 times with ice-cold PBS followed by elution with 100ul of 0.15% TFA. Eluents were desalted using C18

stage tips, eluted with 50% ACN and dried down. Acetylpeptides were suspended in 7ul of 0.1% FA and 3% ACN and 4ul were in-

jected per run.
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LC-MS/MS for Proteomics Analyses

Online separation was donewith a nanoflowProxeon EASY-nLC 1200UHPLC system (Thermo Fisher Scientific). In this set up, the LC

system, column, and platinum wire used to deliver electrospray source voltage were connected via a stainless steel cross (360 mm,

IDEX Health & Science, UH-906x). The column was heated to 50�C using a column heater sleeve (Phoenix-ST) to prevent over-pres-

suring of columns during UHPLC separation. From each peptide fraction, �1ug (based on protein-level BCA prior to digestion with

uniformly-distributed fractionation presumed), the equivalent of 12% of each global proteome sample in a 2 ul injection volume or

50% of each phosphoproteome sample in a 4 ul injection volume, was injected onto an in-house packed 22cm x 75um internal diam-

eter C18 silica picofrit capillary column (1.9 mm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10um tip opening,

New Objective, PF360-75-10-N-5). Mobile phase flow rate was 200 nL/min, comprised of 3% acetonitrile/0.1% formic acid (Solvent

A) and 90% acetonitrile /0.1% formic acid (Solvent B). The 110-min LC-MS/MS method consisted of a 10-min column-equilibration

procedure; a 20-min sample-loading procedure; and the following gradient profile: (min:%B) 0:2; 1:6; 85:30; 94:60; 95;90; 100:90;

101:50; 110:50 (the last two steps at 500 nL/min flow rate). For acetylproteome analysis, the same LC and column setup was

used, but the gradient was extended to 260 min with the following gradient profile: (min:%B) 0:2; 1:6; 235:30; 244:60; 245;90;

250:90; 251:50; 260:50 (the last two steps at 500 nL/min flow rate).

For proteome analysis, samples were analyzed with a benchtop Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific)

equipped with a nanoflow ionization source (James A. Hill Instrument Services, Arlington, MA). Data-dependent acquisition was per-

formed using Q Exactive HF-X Orbitrap v 2.9 software in positive ion mode at a spray voltage of 1.5 kV. MS1 Spectra were measured

with a resolution of 60,000, an AGC target of 3e6 and amass range from 350 to 1800m/z. The data-dependent mode cycle was set to

trigger MS/MS on up to the top 20 most abundant precursors per cycle at an MS2 resolution of 45,000, an AGC target of 5e4, an

isolation window of 0.7 m/z, a maximum injection time of 105 msec, and an HCD collision energy of 31%. Peptides that triggered

MS/MS scans were dynamically excluded from further MS/MS scans for 45 s. Peptide match was set to preferred for monoisotopic

peak determination, and charge state screening was enabled to only include precursor charge states 2-6, with an intensity threshold

of 9.5e4. Advanced precursor determination feature (APD) (Myers et al., 2019) was turned off using a software patch provided to us by

Thermo Fisher Scientific allowing us to turn APDoff in the tune file, Tune version 2.9.0.2926 (later versions of Exactive Tune 2.9 sp2 for

the HFX have this option as standard).

For phosphoproteome and acetylproteome analysis, samples were analyzed with a benchtop Orbitrap Fusion Lumos mass spec-

trometer (Thermo Fisher Scientific) equipped with a NanoSpray Flex NG ion source. Data-dependent acquisition was performed us-

ing Xcalibur Orbitrap Fusion Lumos v3.0 software in positive ion mode at a spray voltage of 1.8 kV. MS1 Spectra weremeasured with

a resolution of 60,000, an AGC target of 4e5 and amass range from 350 to 1800m/z. The data-dependent mode cycle timewas set at

2 s with aMS2 resolution of 50,000, an AGC target of 6e4, an isolation window of 0.7 m/z, a maximum injection time of 105msec, and

an HCD collision energy of 36%. Peptide mode was selected for monoisotopic peak determination, and charge state screening was

enabled to only include precursor charge states 2-6, with an intensity threshold of 1e4. Peptides that triggered MS/MS scans were

dynamically excluded from further MS/MS scans for 45 s, with a ± 10 ppm mass tolerance. ‘‘Perform dependent scan on single

charge state per precursor only’’ was enabled for phosphoproteome analysis and disabled for acetylproteome analysis.

Immunohistochemistry
Total ALK and phospho-ALK (Y1507) immunostainings were performed on representative tumor and matched NATs from the avail-

able cases that contained ALK, ROS1 or RET gene fusions. The antibodies used included anti-ALK primary rabbit monoclonal anti-

body (ALK(D5F3) XP, Cell Signaling Technology, cat #3633 at 1 in 250 dilution) and anti-phospho ALK rabbit monoclonal antibody

(D6F1V, Cell Signaling Technology, cat#14678 at 1:500 dilution). Briefly, 5-micron formalin fixed, paraffin sections were rehydrated

and a heat-induced epitope retrieval was performedwith citrate buffer (pH 6). Incubations with the respective antibodies were carried

out overnight at 4�C followed by buffer washes. For total-ALK, post-incubation with secondary antibody was done for 30 min and for

phospho-ALK (Y1507), post-incubation was done initially with amplifier antibody (goat anti-rabbit IgG) for 15 min followed by sec-

ondary for 30 min. After buffer washes for total-ALK the signal was developed using DAB Peroxidase Substrate Kit (SK-4100; Vector

laboratories) and for phospho-ALK using equal volumes of ImmPACT DAB EqV Reagent 1 (chromogen) and ImmPACT DAB EqV Re-

agent 2 (Diluent) for 5 min. Slides were counterstained with 50% Hematoxylin for 2 min, dehydrated, and coverslipped. IHC was as-

sessed for nuclear and cytoplasmic expression on tumor cells and the background was assessed in NATs (R.M. and R.M.).

Genomic Data Analysis
Copy Number Calling

Copy-number analysis was performed jointly leveraging both whole-genome sequencing (WGS) and whole-exome sequencing

(WES) data of the tumor and germline DNA, using CNVEX (https://github.com/mctp/cnvex). CNVEX uses whole-genome aligned

reads to estimate coverage within fixed genomic intervals, and whole-genome and whole-exome variant calls to compute B-allele

frequencies at variable positions (we used TNScope germline calls). Coverages were computed in 10kb bins, and the resulting

log coverage ratios between tumor and normal samples were adjusted for GC bias using weighted LOESS smoothing across map-

pable and non-blacklisted genomic intervals within the GC range 0.3-0.7, with a span of 0.5 (the target, blacklist, and configuration

files are provided with CNVEX). The adjusted log coverage ratios (LR) and B-allele frequencies (BAF) were jointly segmented by

custom algorithm based on Circular Binary Segmentation (CBS). Alternative probabilistic algorithms were implemented in CNVEX,
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including algorithms based on recursive binary segmentation (RBS), and dynamic programming (Bellman, 1961), as implemented in

the R-package jointseg (Pierre-Jean et al., 2015). For the CBS-based algorithm, first LR and mirrored BAF were independently

segmented using CBS (parameters alpha = 0.01, trim = 0.025) and all candidate breakpoints collected. The resulting segmentation

track was iteratively ‘‘pruned’’ by merging segments that had similar LR, BAFs and short lengths. For the RBS- and DP-based algo-

rithms, joint-breakpoints were ‘‘pruned’’ using a statistical model selection method (Lebarbier, 2005). For the final set of CNV seg-

ments, we chose the CBS-based results as they did not require specifying a prior on the number of expected segments (K) per chro-

mosome arm, were robust to unequal variances between the LR and BAF tracks, and provided empirically the best fit to the

underlying data.

Somatic Variant Calling

We called somatic variants for GDC-aligned WES BAMs by using the SomaticWrapper pipeline (https://github.com/ding-lab/

somaticwrapper), which includes four different callers, i.e., Strelka v.2 (Saunders et al., 2012), MUTECT v1.7 (Cibulskis et al.,

2013), VarScan v.2.3.8 (Koboldt et al., 2012), and Pindel v.0.2.5 (Ye et al., 2009). We kept SNVs called by any 2 callers among

MUTECT v1.7, VarScan v.2.3.8, and Strelka v.2 and indels called by any 2 callers among VarScan v.2.3.8, Strelka v.2, and Pindel

v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage cutoff for tumor and normal, separately. We also filtered

SNVs and indels by a minimal variant allele frequency (VAF) of 0.05 in tumors and a maximal VAF of 0.02 in normal samples. Finally,

we filtered any SNV that was within 10bp of an indel found in the same tumor sample.

In step 13 of the SomaticWrapper pipeline, it combined adjacent SNVs into DNP (di-nucleotide polymorphisms) by using

COCOON: As input, COCOON takes a MAF file from standard variant calling pipeline. First, it extracts variants within a 2bp window

as DNP candidate sets. Next, if the corresponding BAM files used for variant calling are available, it extracts the reads (denoted as

n_t) spanning all candidate DNP locations in each variant set, and then counts the number of reads with all the co-occurring variants

(denoted as n_c) to calculate co-occurrence rate (r_c = n_c/n_t); If r_cR 0.8, the nearby SNVs will be combined into DNP and anno-

tation updated for the DNPs from the same codon based on the transcript and coordinates information in the MAF file. Among a total

32,250 somatic variants identified from the SomaticWrapper pipeline, there were 437 DNPs, in which 228 fell in the dominant smok-

ing-related DNP type (CC->AA or GG->TT).

GISTIC and MutSig analysis

The Genomic Identification of Significant Targets in Cancer (GISTIC2.0) algorithm (Mermel et al., 2011) was used to identify signif-

icantly amplified or deleted focal-level and arm-level events, with Q value < 0.25 considered significant. The following parameters

were used:

d Amplification Threshold = 0.1

d Deletion Threshold = 0.1

d Cap Values = 1.5

d Broad Length Cutoff = 0.98

d Remove X-Chromosome = 0

d Confidence Level = 0.99

d Join Segment Size = 4

d Arm Level Peel Off = 1

d Maximum Sample Segments = 2000

d Gene GISTIC = 1

Each gene of every sample is assigned a thresholded copy number level that reflects the magnitude of its deletion or amplification.

These are integer values ranging from �2 to 2, where 0 means no amplification or deletion of magnitude greater than the threshold

parameters described above. Amplifications are represented by positive numbers: 1 means amplification above the amplification

threshold; 2 means amplification larger than the arm level amplifications observed in the sample. Deletions are represented by nega-

tive numbers: �1 means deletion beyond the threshold; �2 means deletions greater than the minimum arm-level copy number

observed in the sample.

The somatic variants were filtered through a panel of normals to remove potential sequencing artifacts and undetected germline

variants. MutSig2CV (Lawrence et al., 2014) was run on these filtered results to evaluate the significance of mutated genes and es-

timatemutation densities of samples. These results were constrained to genes in the Cancer Gene Census (Sondka et al., 2018), with

false discovery rates (q values) recalculated. Genes of q value < 0.1 were declared significant.

RNaseq and miRNaseq Quantification
RNaseq Quantification

Transcriptome data have been analyzed as described previously (Robinson et al., 2017), using the Clinical RNA-seq Pipeline (CRISP)

developed at the University of Michigan (https://github.com/mcieslik-mctp/crisp-build). Briefly, raw sequencing data was trimmed,

merged using BBMap, and aligned to GRCh38/hg38 using STAR. The resulting BAM files were analyzed for expression using feature

counts against a transcriptomic reference based on Gencode 26. The resulting gene-level counts for protein-coding genes were up-

per-quartile normalized, transformed into RPKMs using edgeR, and log2 transformed. Genes quantified in fewer than 30%of all sam-

ples were removed from the data matrix. Data rows of redundant gene symbols were aggregated by calculating the average

log2(RPKM).
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For integrative multi-omics subtyping we normalized each gene by the median log2(RPKM) across all tumors (gene-centering) and

applied the same per-sample normalization strategy used to normalize proteomics data tables (see below: Two-component normal-

ization of TMT ratio distributions).

miRNA-Seq Data Analysis

miRNA-seq FASTQ files were downloaded from the CPTAC GDC API (https://docs.gdc.cancer.gov). TPM (Transcripts per million)

values of maturemiRNA and precursor miRNAwere reported after adaptor trimming, quality check, alignment, annotation, and reads

counting (https://github.com/ding-lab/CPTAC_miRNA/blob/master/cptac_mirna_analysis.md). The mature miRNA expression was

calculated irrespective of its gene of origin by summing the expression from its precursor miRNAs.

Unsupervised miRNA expression subtype identification was performed on mature miRNAs expression (log2 TPM) from 106 LUAD

patients using Louvain clustering. (https://zenodo.org/record/595481). The expression of top 50 differentially expressed miRNAs

from each miRNA-based subtype was shown in the heatmap (Figure S3J). For consistency, miRNA expression, RNA expression

and protein expression were scaled to 0-1.

Proteomics Data Analysis
Spectrum quality filtering and searching

All MS data were interpreted using the SpectrumMill software package v7.0 pre-release (Agilent Technologies, Santa Clara, CA) co-

developed by Karl Clauser of the Carr laboratory (https://www.broadinstitute.org/proteomics). Similar MS/MS spectra acquired on

the same precursor m/z within ± 45 sweremerged.MS/MS spectra were excluded from searching if they failed the quality filter by not

having a sequence tag length > 0 (i.e., minimum of two masses separated by the in-chain mass of an amino acid) or did not have a

precursor MH+ in the range of 800-6000. MS/MS spectra were searched against a RefSeq-based sequence database containing

41,457 proteins mapped to the human reference genome (GRCh38/hg38) obtained via the UCSC Table Browser (https://genome.

ucsc.edu/cgi-bin/hgTables) on June 29, 2018, with the addition of 13 proteins encoded in the human mitochondrial genome,

264 common laboratory contaminant proteins, and 553 non-canonical small open reading frames. Scoring parameters were ESI-

QEXACTIVE-HCD-v2, for whole proteome datasets, and ESI-QEXACTIVE-HCD-v3, for phosphoproteome and acetylproteome data-

sets. All spectra were allowed ± 20 ppmmass tolerance for precursor and product ions, 30%minimummatched peak intensity, and

‘‘trypsin allow P’’ enzyme specificity with up to 4 missed cleavages. Allowed fixed modifications included carbamidomethylation of

cysteine and selenocysteine. TMT labeling was required at lysine, but peptide N-termini were allowed to be either labeled or

unlabeled. Allowed variable modifications for whole proteome datasets were acetylation of protein N-termini, oxidized methionine,

deamidation of asparagine, hydroxylation of proline in PG motifs, pyro-glutamic acid at peptide N-terminal glutamine, and pyro-

carbamidomethylation at peptide N-terminal cysteine with a precursor MH+ shift range of �18 to 97 Da. For the phosphoproteome

dataset the allowed variable modifications were revised to allow phosphorylation of serine, threonine, and tyrosine, allow deamida-

tion only in NG motifs, and disallow hydroxylation of proline with a precursor MH+ shift range of �18 to 272 Da. For the acetylpro-

teome dataset the allowed variablemodifications were revised to allow acetylation of lysine, allow deamidation only in NGmotifs, and

disallow hydroxylation of proline with a precursor MH+ shift range of �400 to 70 Da.

Protein grouping, and localization of PTMs

Identities interpreted for individual spectra were automatically designated as confidently assigned using the Spectrum Mill autova-

lidation module to use target-decoy based false discovery rate (FDR) estimates to apply score threshold criteria. For the whole pro-

teome dataset thresholding was done in 3 steps: at the peptide spectrummatch (PSM) level, the protein level for each TMT-plex, and

the protein level for all 25 TMT-plexes. For the phosphoproteome and acetylproteome datasets thresholding was done in two steps:

at the PSM and variable modification (VM) site levels.

In step 1 for all datasets, PSM-level autovalidation was done first and separately for each TMT-plex experiment consisting of either

25 LC-MS/MS runs (whole proteome), 13 LC-MS/MS runs (phosphoproteome), or 4 LC-MS/MS runs (acetylproteome) using an auto-

thresholds strategy with a minimum sequence length of 7; automatic variable range precursor mass filtering; and score and delta

Rank1 – Rank2 score thresholds optimized to yield a PSM-level FDR estimate for precursor charges 2 through 4 of < 0.8% for

each precursor charge state in each LC-MS/MS run. To achieve reasonable statistics for precursor charges 5-6, thresholds were

optimized to yield a PSM-level FDR estimate of < 0.4% across all runs per TMT-plex experiment (instead of per each run), since

many fewer spectra are generated for the higher charge states.

In step 2 for the whole proteome dataset, protein-polishing autovalidation was applied separately to each TMTplex experiment to

further filter the PSMs using a target protein-level FDR threshold of zero. The primary goal of this step was to eliminate peptides iden-

tified with low scoring PSMs that represent proteins identified by a single peptide, so-called ‘‘one-hit wonders.’’ After assembling

protein groups from the autovalidated PSMs, protein polishing determined the maximum protein level score of a protein group

that consisted entirely of distinct peptides estimated to be false-positive identifications (PSMs with negative delta forward-reverse

scores). PSMswere removed from the set obtained in the initial peptide-level autovalidation step if they contributed to protein groups

that had protein scores below the maximum false-positive protein score. Step 3 was then applied, consisting of protein-polishing

autovalidation across all TMT plexes together using the protein grouping method ‘‘expand subgroups, top uses shared’’ to retain

protein subgroups with either a minimum protein score of 25 or observation in at least 4 TMT plexes. The primary goal of this

step was to eliminate low scoring proteins that were infrequently detected in the sample cohort. As a consequence of these two pro-

tein-polishing steps, each identified protein reported in the study was comprised of multiple peptides, unless a single excellent
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scoring peptide was the sole match and that peptide was observed in at least 4 TMT-plexes. In calculating scores at the protein level

and reporting the identified proteins, peptide redundancy was addressed in SpectrumMill as follows: The protein score was the sum

of the scores of distinct peptides. A distinct peptide was the single highest scoring instance of a peptide detected through anMS/MS

spectrum. MS/MS spectra for a particular peptide may have been recordedmultiple times (e.g., as different precursor charge states,

in adjacent bRP fractions,modified by deamidation at Asn or oxidation ofMet, or with different phosphosite localization), but were still

counted as a single distinct peptide. When a peptide sequence of > 8 residues was contained in multiple protein entries in the

sequence database, the proteins were grouped together and the highest scoring one and its accession number were reported. In

some cases when the protein sequences were grouped in this manner, there were distinct peptides that uniquely represent a lower

scoring member of the group (isoforms, family members, and different species). Each of these instances spawned a subgroup. Mul-

tiple subgroups were reported, counted toward the total number of proteins, and given related protein subgroup numbers (e.g., 3.1

and 3.2 for group 3, subgroups 1 and 2). For the whole proteome datasets the above criteria yielded false discovery rates (FDR) for

each TMT-plex experiment of < 0.6% at the peptide-spectrummatch level and < 0.8% at the distinct peptide level. After assembling

proteins with all the PSMs from all the TMT-plex experiments together, the aggregate FDR estimates were 0.57% at the peptide-

spectrum match level, 2.6% at the distinct peptide level, and < 0.01% (1/11,015) at the protein group level. Since the protein level

FDR estimate neither explicitly required a minimum number of distinct peptides per protein nor adjusted for the number of possible

tryptic peptides per protein, it may underestimate false positive protein identifications for large proteins observed only on the basis of

multiple low scoring PSMs.

In step 2 for the phosphoproteome and acetylproteome datasets, variable modification (VM) site polishing autovalidation was

applied across all 25 TMT plexes to retain all VM-site identifications with either a minimum id score of 8.0 or observation in at least

4 TMT plexes. The intention of the VM site polishing step is to control FDR by eliminating unreliable VM site-level identifications,

particularly low scoring VM sites that are only detected as low scoring peptides that are also infrequently detected across all of

the TMT plexes in the study. In calculating scores at the VM-site level and reporting the identified VM sites, redundancy was ad-

dressed in Spectrum Mill as follows: A VM-site table was assembled with columns for individual TMT-plex experiments and rows

for individual VM-sites. PSMs were combined into a single row for all non-conflicting observations of a particular VM-site (e.g.,

different missed cleavage forms, different precursor charges, confident and ambiguous localizations, and different sample-handling

modifications). For related peptides, neither observations with a different number of VM-sites nor different confident localizations

were allowed to be combined. Selecting the representative peptide from the combined observations was done such that once confi-

dent VM-site localization was established, higher identification scores and longer peptide lengths were preferred. While a Spectrum

Mill identification score was based on the number of matching peaks, their ion type assignment, and the relative height of unmatched

peaks, the VM site localization score was the difference in identification score between the top two localizations. The score threshold

for confident localization, > 1.1, essentially corresponded to at least 1 b or y ion located between two candidate sites that has a peak

height > 10% of the tallest fragment ion (neutral losses of phosphate from the precursor and related ions as well as immonium and

TMT reporter ions were excluded from the relative height calculation). The ion type scores for b-H3PO4, y-H3PO4, b-H2O, and y-H2O

ion types were all set to 0.5. This prevented inappropriate confident localization assignment when a spectrum lacked primary b or y

ions between two possible sites but contained ions that could be assigned as either phosphate-loss ions for one localization or water

loss ions for another localization. VM-site polishing yielded 65,103 phosphosites with an aggregate FDR of 0.74% at the phosphosite

level. In aggregate, 71% of the reported phosphosites in this study were fully localized to a particular serine, threonine, or tyrosine

residue. VM-site polishing yielded 13,480 acetylsites with an aggregate FDR of 0.89% at the acetylsite level. In aggregate, 99%of the

reported acetylsites in this study were fully localized to a particular lysine residue.

Quantitation using TMT ratios

Using the Spectrum Mill Protein/Peptide Summary module, a protein comparison report was generated for the proteome dataset

using the protein grouping method ‘‘expand subgroups, top uses shared’’ (SGT). For the phosphoproteome and acetylproteome da-

tasets a Variable Modification site comparison report limited to either phospho or acetyl sites, respectively, was generated using the

protein grouping method ‘‘unexpand subgroups.’’ Relative abundances of proteins and VM-sites were determined in Spectrum Mill

using TMT reporter ion intensity ratios from each PSM. TMT reporter ion intensities were corrected for isotopic impurities in the Spec-

trumMill Protein/Peptide summarymodule using the afRICA correctionmethod, which implements determinant calculations accord-

ing to Cramer’s Rule (Shadforth et al., 2005) and correction factors obtained from the reagent manufacturer’s certificate of analysis

(https://www.thermofisher.com/order/catalog/product/90406) for TMT10_lot number SE240163. A protein-level, phosphosite-level,

or acetylsite-level TMT ratio is calculated as the median of all PSM-level ratios contributing to a protein subgroup, phosphosite, or

acetylsite. PSMs were excluded from the calculation if they lacked a TMT label, had a precursor ion purity < 50% (MS/MS has sig-

nificant precursor isolation contamination from co-eluting peptides), or had a negative delta forward-reverse identification score (half

of all false-positive identifications). Lack of TMT label led to exclusion of PSMs per TMT plex with a range of 1.4 to 3.3% for the

proteome, 1.2 to 3.9% for the phosphoproteome, and 1.3 to 6.6% for the acetylproteome datasets. Low precursor ion purity led

to exclusion of PSMs per TMT plex with a range of 1.2 to 1.6% for the proteome, 2.0 to 2.9% for the phosphoproteome, and 4.6

to 7.5% for the acetylproteome datasets.

Two-component normalization of TMT ratios

It was assumed that for every sample there would be a set of unregulated proteins or phosphosites that have abundance comparable

to the common reference (CR) sample. In the normalized sample, these proteins, phosphosites, or acetylsites should have a log TMT
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ratio centered at zero. In addition, there were proteins, phosphosites, and acetylsites that were either up- or downregulated

compared to the CR. A normalization scheme was employed that attempted to identify the unregulated proteins phosphosites or

acetylsites, and centered the distribution of these log-ratios around zero in order to nullify the effect of differential protein loading

and/or systematic MS variation. A 2-component Gaussian mixture model-based normalization algorithm was used to achieve this

effect. The two Gaussians (mi1;si1) and (mi2;si2) for a sample i were fitted and used in the normalization process as follows: the

mode mi of the log-ratio distribution was determined for each sample using kernel density estimation with a Gaussian kernel and

Shafer-Jones bandwidth. A two-component Gaussian mixture model was then fit with the mean of both Gaussians constrained to

be mi, i.e., mi1 = mi2 = mi. The Gaussian with the smaller estimated standard deviation si = min ( , ) was assumed to represent

the unregulated component of proteins/phosphosites/acetylsites, and was used to normalize the sample. The sample was standard-

ized using (mi), by subtracting the mean mi from each protein/phosphosite/acetylsite and dividing by the standard deviation si.

Comparative reference sample

To better dissect the tumor/stroma (human/mouse) origin of orthologous proteins in the CompRef xenograft samples, a few diver-

gences were made in the data analysis described above. The sequence database used for searching MS/MS spectra was expanded

to include 30,608 mouse proteins, mapped to the mouse reference genome (mm10) obtained via the UCSC Table Browser (https://

genome.ucsc.edu/cgi-bin/hgTables) on the same date as the corresponding human reference genome June 29, 2018, along with the

addition of 13 proteins encoded in the mouse mitochondrial genome. For the proteome dataset, autovalidation step 3 consisted of

protein-polishing autovalidation across all 4 TMT plexes together using the protein grouping method ‘‘unexpand subgroups,’’ to

retain protein groups with either a minimum protein score of 25 or observation in at least 2 TMT plexes. The subsequent protein com-

parison report generated for the proteome dataset employed the subgroup-specific (SGS) protein grouping option, which omitted

peptides that are shared between subgroups, and included only subgroup specific peptide sequences toward each subgroup’s

count of distinct peptides and protein level TMT quantitation. If evidence for both human and mouse peptides from an orthologous

protein were observed, then peptides that cannot distinguish the two (shared) were ignored. However, the peptides shared between

species were retained if there was specific evidence for only one of the species, thus yielding a single subgroup attributed to only the

single species consistent with the specific peptides. Furthermore, if all peptides observed for a protein group were shared between

species, thus yielding a single subgroup composed of indistinguishable species, then all peptides were retained. For the proteome

dataset, only PSMs from subgroup-specific peptide sequences contributed to the protein level quantification. A protein detected

with all contributing PSMs shared between human and mouse was considered to be human. For the phosphoproteome and acetyl-

proteome datasets, a phosphosite or acetylsite was considered to be mouse if the contributing PSMs were distinctly mouse and hu-

man if they were either distinctly human or shared between human and mouse.

Systems Biology analysis
Sample exclusion

To ensure that poor quality or questionable samples were not included in the final dataset, we performed principal component anal-

ysis (PCA) on the RNA-seq, global proteome and phosphosite expression data. In the input to PCA (Figure 7A), we excluded any

genes, proteins and phosphosites (in the respective datasets) missing in 50% or more of the samples. For each dataset, we plotted

the 95% confidence ellipse in the PC1 versus PC2 plot for the tumor and normal groups. Any samples falling outside these ellipses

were deemed to be outliers. Samples that were outliers in all three datasets (RNA-seq, proteome and phosphosite) and had incon-

sistent pathology reviews were excluded. Only sample C3N.00545 satisfied all exclusion criteria and was removed from the final

dataset.

Dataset filtering

Genes (RNA-seq), proteins (global proteome), phosphosites and acetylsites present in fewer than 30% of samples (i.e., missing in >

70% of samples) were removed from the respective datasets. Furthermore:

d Proteins were required to have at least two observed TMT ratios in > 25% of samples in order to be included in the proteome

dataset. Phosphosites and acetylsites were required to have at least one observed TMT ratio in > 25% of samples.

d Proteins, phosphosites and acetylsites were required to have TMT ratios with an overall standard deviation > 0.5 across all the

samples where they were observed. This ensured that a small number of proteins, phosphosites and acetylsites that did not vary

much over the set of samples were excluded to minimize noise.

Replicate samples in the dataset were merged by taking the mean of the respective expression values or ratios.

Some of the filtering steps were modified for specific analyses in the study. For many of the marker selection and gene set enrich-

ment analyses, at least 50% of samples were required to have non-missing values for proteins/phosphosites/acetyl sites, since

missing values were imputed, and excessive missing values can result in poor imputation. Alternate filtering has been noted in

descriptions of the relevant methods.

Unsupervised multi-omics clustering using NMF

We used non-negative matrix factorization (NMF) implemented in the NMF R-package (Gaujoux and Seoighe, 2010) to perform un-

supervised clustering of tumor samples and to identify proteogenomic features (proteins, phosphosites, acetylsites and RNA tran-

scripts) that show characteristic expression patterns for each cluster. Briefly, given a factorization rank k (where k is the number of

clusters), NMF decomposes a p x n data matrix V into two matrices W and H such that multiplication of W and H approximates

V. Matrix H is a k x n matrix whose entries represent weights for each sample (1 to N) to contribute to each cluster (1 to k), whereas
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matrix W is a p x k matrix representing weights for each feature (1 to p) to contribute to each cluster (1 to k). Matrix H was used to

assign samples to clusters by choosing the k with maximum score in each column of H. For each sample we calculated a cluster

membership score as the maximal fractional score of the corresponding column in matrix H. We defined a ’’cluster core’’ as the

set of samples with cluster membership score > 0.5. Matrix W containing the weights of each feature to a certain cluster was

used to derive a list of representative features separating the clusters using the method proposed in (Kim and Park, 2007).

To enable integrative multi-omics clustering we enforced all data types (and converted if necessary) to represent ratios to either a

common reference measured in each TMT plex (proteome, phosphoproteome, acetylproteome) or an in silico common reference

calculated as the median abundance across all samples (mRNA, see ‘‘RNA Quantification’’). All data tables were then concatenated

and filtered to contain amaximumof 30%missing values across all tumors. The remainingmissing values were imputed via k-nearest

neighbor (kNN) imputation implemented in the impute R-package (https://doi.org/10.18129/B9.bioc.impute) using the 5 nearest

neighbors. To remove uninformative features from the dataset prior to NMF clustering we removed features with the lowest standard

deviation (bottom 5th percentile) across all samples. Each row in the data matrix was further scaled and standardized such that all

features from different data types were represented as z-scores.

Since NMF requires a non-negative input matrix we converted the z-scores in the data matrix into a non-negative matrix as follows:

1) Create one data matrix with all negative numbers zeroed.

2) Create another data matrix with all positive numbers zeroed and the signs of all negative numbers removed.

3) Concatenate both matrices resulting in a data matrix twice as large as the original, but containing only positive values and zeros

and hence appropriate for NMF.

The resulting matrix was then subjected to NMF analysis leveraging the NMF R-package (Gaujoux and Seoighe, 2010) and using

the factorization method described in (Brunet et al., 2004). To determine the optimal factorization rank k (number of clusters) for the

multi-omic data matrix we tested a range of clusters between k = 2 and 8. For each k we factorized matrix V using 50 iterations with

random initializations of W and H. To determine the optimal factorization rank we calculated cophenetic correlation coefficients

measuring how well the intrinsic structure of the data was recapitulated after clustering and chose the k with maximal cophenetic

correlation for cluster numbers between k = 3 and 8. (Figure S1G).

Having determined the optimal factorization rank k, in order to achieve robust factorization of the multi-omics data matrix V, we

repeated the NMF analysis using 200 iterations with random initializations of W and H and performed the partitioning of samples

into clusters as described above. Due to the non-negative transformation applied to the z-scored data matrix as described above,

matrixW of feature weights contained two separate weights for positive and negative z-scores of each feature, respectively. In order

to revert the non-negative transformation and to derive a single signed weight for each feature, we first normalized each row inmatrix

W by dividing by the sum of feature weights in each row, aggregated both weights per feature and cluster by keeping the maximal

normalized weight and multiplication with the sign of the z-score in the initial data matrix. Thus, the resulting transformed version of

matrix Wsigned contained signed cluster weights for each feature in the input matrix.

For Functional characterization of clustering results by single sample Gene Set Enrichment Analysis (ssGSEA), we calculated

normalized enrichment scores (NES) of cancer-relevant gene sets by projecting the matrix of signed multi-omic feature weights

(Wsigned) onto Hallmark pathway gene sets (Liberzon et al., 2015) using ssGSEA (Barbie et al., 2009). To derive a single weight for

each gene measured across multiple omics data types (protein, RNA, phosphorylation site, acetylation site) we retained the

weight with maximal absolute amplitude. We used the ssGSEA implementation available on https://github.com/broadinstitute/

ssGSEA2.0 using the following parameters:

d gene.set.database = ‘‘h.all.v6.2.symbols.gmt’’

d sample.norm.type = ‘‘rank’’

d weight = 1

d statistic = ’’area.under.RES’’

d output.score.type = ‘‘NES’’

d nperm = 1000

d global.fdr = TRUE

d min.overlap = 5

d correl.type = ’’z.score’’

To test the association of the resulting clusters to clinical variables we used Fisher’s exact test (R function fisher.test) to test for

overrepresentation in the set of samples defining the cluster core as described above. The following variables were included in

the analysis: RNA.Expression.Subtype.TCGA, Region.of.Origin, Stage, Gender, Smoking.Status (self reported), TP53.mutation.sta-

tus, KRAS.mutation.status, STK11.mutation.status, EGFR.mutation.status, KEAP1.mutation.status, ALK.fusion, CIMP.status.

In order to adjust for tumor purity, for each omic data type (i.e., gene expression, global protein, phosphoproteome and acetylpro-

teome abundance), each marker was modeled as a function of tumor purity from TSNet (Petralia et al., 2018) via a linear regression.

Then, residuals from linear regression were considered to perform multi-omic clustering.

The entire workflow described above has been implemented as a module for Broad’s Cloud platform Terra (https://app.terra.bio/).

The docker containers encapsulating the source code and required R-packages for NMF clustering and ssGSEA have been submit-

ted to Dockerhub (broadcptac/pgdac_mo_nmf:9, broadcptac/pgdac_ssgsea:5). The source code for ssGSEA is available onGitHub:

https://github.com/broadinstitute/ssGSEA2.0.
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RNA subtyping

Starting with RNA expression data for the CPTAC LUAD cohort, the top 5,000most variable genes were subjected to clustering using

ConsensusClusterPlus (Wilkerson and Hayes, 2010). The resulting three clusters were mapped to TCGA RNA expression subtypes

(Cancer Genome Atlas Research Network, 2014;Wilkerson et al., 2012) by associating enriched clinical features and genemutations.

The association of subtype and features were compared using Fisher’s exact test.

Pathway over-representation analysis

To designate the representative pathways of multi-omics subtypes, we used the Wilcoxon rank sum test to select the top 250 differ-

entially expressed features (mRNA, proteins and phosphosites), or features with p-value less than 0.05 (acetylsites) for each subtype.

We then performed hierarchical clustering on these 1000 features and 573 acetylsites. Each set of clustered features underwent

pathway enrichment analysis using Reactome (Fabregat et al., 2017). Pathways with p-value smaller than 0.05 were manually re-

viewed and highlighted in Figure 1E. For visualization purposes, only the top 50 differentially expressed features for each subtype

were displayed. In total, 200 features were shown for each data type in the heatmap.

Fusion detection and analysis

Structural variants in WGS samples were called with Manta 1.3.2, retaining variants where sample site depth was less than 3x

the median chromosome depth near one or both variant breakends, somatic score was greater than 30, and for small variants

(< 1000 bases) in the normal sample, the fraction of reads with MAPQ0 around either breakend did not exceed 0.4.

Fusions in RNA-Seq samples were called using three callers: STAR-Fusion, EricScript, and Integrate, with fusions reported by at

least 2 callers or reported by STAR-Fusion being retained. Fusions present in the following databases were then excluded: 1) unchar-

acterized genes, immunoglobulin genes, mitochondrial genes, etc., 2) fusions from the same gene or paralog genes, and 3) fusions

reported in TCGA normal samples, GTEx tissues, and non-cancer cell studies. Finally, normal fusions were filtered out from the tumor

fusions.

mRNA and Protein correlation

To compare mRNA expression and protein abundance across samples we focused on the RNaseq data with 18,099 genes, and

global proteome with 10,316 quantified proteins. Only genes or proteins with < 50% NAs (missing values) were considered for the

analysis, and protein IDs were mapped to gene names. In total, 9,616 genes common to both RNaseq and proteome data spanning

110 tumor samples were used in the analysis. The analyses were carried out on normalized data - RNaseq data were log2 trans-

formed, upper quartile normalized RPKM values, which were median-centered by row (i.e., gene); proteome data was two-compo-

nent normalized as described earlier. Correlation was calculated by Spearman’s correlation method using cor.test (Bioconductor,

version 3.5.2) function in R. Both correlation coefficient and p-value were computed. Further, adjusted p-value was calculated using

the Benjamini–Hochberg procedure. Similarly, mRNA-protein correlation among NAT samples was carried out with overlapping

genes over the 101 NAT samples.

To identify genes that reverse their direction in tumors relative to NATs, we selected significant (Benjamini-Hochberg multiple test,

FDR < 0.1) mRNA-protein pairs in NATs and Tumors, respectively, that changed from negative correlation to positive correlation or

vice-versa. Significant genes identified in the global tumor-NAT comparison and individual mutant categories were merged together

and are shown in Figure 3Awith corresponding correlation coefficients. For paired tumor-NAT analysis, we considered 101 out of 110

samples for which we have paired NATs, out of which 52, 36, 29, and 17 samples had TP53, EGFR, KRAS and STK11 mutations,

respectively.

CNA-driven cis and trans effects

Correlations between copy number alterations (CNA) and RNA, proteome, phosphoproteome and acetylproteome (with proteome

and PTM data mapped to genes, by choosing the most variable protein isoform/PTM site as the gene-level representative) were

determined using Pearson correlation of common genes present in CNA-RNA-proteome (9,341 genes), CNA-RNA-phosphopro-

teome (5,244 genes) and CNA-RNA-acetylproteome (1,313 genes). In addition, p-values (corrected for multiple testing using Benja-

mini-Hochberg FDR) for assessing the statistical significance of the correlation values were also calculated. CNA trans-effects for a

given gene were determined by identifying genes with statistically significant (FDR < 0.05) positive or negative correlations.

CMAP analysis

Candidate genes driving response to copy number alterations were identified using large-scale Connectivity Map (CMAP) queries.

The CMAP (Lamb et al., 2006; Subramanian et al., 2017) is a collection of about 1.3 million gene expression profiles from cell lines

treated with bioactive small molecules (�20,000 drug perturbagens), shRNA gene knockdowns (�4,300) and ectopic expression of

genes. The CMAP dataset is available on GEO (Series GSE92742). For this analysis, we use the Level 5 (signatures from aggregating

replicates) TouchStone dataset with 473,647 total profiles, containing 36,720 gene knock-down profiles, with measurements for

12,328 genes. See https://clue.io/GEO-guide for more information.

To identify candidate driver genes, proteome profiles of copy number-altered samples were correlated with gene knockdown

mRNA profiles in the above CMAP dataset, and enrichment of up/downregulated genes was evaluated. Normalized log2 copy num-

ber values less than�0.3 defined deletion (loss), and values greater than +0.3 defined copy number amplifications (gains). In the copy

number-altered samples (separately for CNA amplification and CNA deletion), the trans-genes (identified by significant correlation in

‘‘CNA driven cis and trans effects’’ above) were grouped into UP and DOWN categories by comparing the protein ratios of these

genes to their ratios in the copy number neutral samples (normalized log2 copy number between �0.3 and +0.3). The lists of UP

and DOWN trans-genes were then used as queries to interrogate CMAP signatures and calculate weighted connectivity scores
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(WTCS) using the single-sample GSEA algorithm (Krug et al., 2018). The weighted connectivity scores were then normalized for each

perturbation type and cell line to obtain normalized connectivity scores (NCS). See (Subramanian et al., 2017) for details on WTCS

and NCS. For each query we then identified outlier NCS scores, where a score was considered an outlier if it lay beyond 1.5 times the

interquartile range of score distribution for the query. The query gene was designated a candidate driver if (i) the score outliers were

statistically cis-enriched (Fisher test with BH-FDRmultiple testing correction) and (ii) the gene had statistically significant and positive

cis-correlation.

For a gene to be considered for inclusion in aCMAP query it needed to i) have a copy number change (amplification or deletion) in at

least 15 samples; ii) have at least 20 significant trans genes; and iii) be on the list of shRNA knockdowns in the CMAP. 501 genes

satisfied these conditions and resulted in 737 queries (CNA amplification and deletion combined) that were tested for enrichment.

Twelve (12) candidate driver genes were identified with Fisher’s test FDR < 0.1, using this process.

In order to ensure that the identified candidate driver genes were not a random occurrence, we performed a permutation test to

determine howmany candidate driver geneswould be identifiedwith random input (Mertins et al., 2016). For the 737 queries used, we

substituted the bona-fide trans-geneswith randomly chosen genes, and repeated theCMAP enrichment process. To determine FDR,

each permutation run was treated as a Poisson sample with rate l, counting the number of identified candidate driver genes. Given

the small n ( = 10) and l, a Score confidence interval was calculated (Barker, 2002) and themidpoint of the confidence interval used to

estimate the expected number of false positives. Using 10 random permutations, we determined the overall false discovery rate to be

FDR = 0.13, with a 95% CI of (0.06, 0.19).

To identify how many trans-correlated genes for all candidate regulatory genes could be directly explained by gene expression

changes measured in the CMAP shRNA perturbation experiments, knockdown gene expression consensus signature z-scores

(knockdown/control) were used to identify regulated genes with a = 0.05, followed by counting the number of trans-genes in this

list of regulated genes.

To obtain biological insight into the list of candidate driver genes, we performed (i) enrichment analysis on samples with extreme

CNA values (amplification or deletion) to identify statistically enriched sample annotation subgroups; and (ii) GSEA on cis/trans-cor-

relation values to find enriched pathways.

Defining cancer-associated genes

Cancer-associated genes (CAG) were compiled from genes defined by Bailey et al. (Bailey et al., 2018) and cancer-associated genes

listed in Mertins et. al (Mertins et al., 2016) and adapted from Vogelstein et al.(Vogelstein et al., 2013). The list of genes is provided in

Table S4.

DNA methylation data preprocessing

Rawmethylation image files were downloaded from the CPTAC DCC (See data availability). We calculated and analyzed methylated

(M) and unmethylated (U) intensities for LUAD samples as described previously (Fortin et al., 2014). We flagged locus as NA where

probes did notmeet a detection p-value of 0.01. Probes withMAFmore than 0.1 were removed, and samples withmore than 85%NA

values were removed. Resulting beta values of methylation were utilized for subsequent analysis.

Gene-level methylation scores were generated by taking the mean beta values of probes in the CpG islands of promoters and 50

UTR regions of the gene. Methylation profiles (i.e., density plots) of some samples had unexpectedly skewed distributions of methyl-

ation beta values, in addition to significantly more missing values. To systematically determine the subset of methylation samples

with these evident data QC issues, we subjected all the samples to model-based clustering using the Mclust package (Scrucca

et al., 2016) in R, using themedian beta value over all the genes as the representative metric. The clustering automatically determined

the optimal number of clusters, and identified 3 clusters. Two of these clusters (with centroids at 0.036 and 0.045) captured the bulk of

the samples (187). The third cluster (centroid at 0.211, significantly higher than the other two clusters) consisted of 19 samples, each

of which had a skewed distribution of beta values with a mean of 5,704 missing values per sample (in contrast to 2.7 missing values

per sample for clusters 1 and 2 combined). Based on this analysis, we concluded that the 19 samples in cluster 3 represent samples

with poor data quality. These have been excluded from all methylation analysis.

CpG Island Methylator Phenotype

To classify the 100 tumor samples with high-quality DNA methylation data into the CpG island methylator phenotypes (CIMP), we

performed consensus clustering of the methylation data. Specifically, we first generated the gene-level methylation score, by taking

the average beta values of all probes harboring in the CpG islands of promoter or 50 UTR regions of the gene. Then, we considered all

genes that were hypermethylated in tumor, i.e., had gene-level methylation scores > 0.2, transformed the score into M-values (Du

et al., 2010), normalized the transformed score, and then imputed the missing values as zero (mean of normalized data). We then

performed consensus clustering 1000 times, each time taking 80% of the samples and all genes, and calculated the consensus ma-

trix (probabilities of two samples clustering together) for each predetermined number of clusters K. For each value of K, we visualized

the consensusmatrix using hierarchical clustering with Pearson correlation as the distancemetric. Finally, we determined the optimal

number of clusters by considering the relative change in area under the consensus cumulative density function (CDF) curve. In the

end, three distinct clusters were identified: One was hypermethylated with mean M value 0.3, and two were hypomethylated with

mean M value �0.17 and �0.18, respectively. We labeled these three clusters as CIMP-high, CIMP-intermediate, and CIMP-low

groups.
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iProFun Based Cis Association Analysis

We used iProFun, an integrative analysis tool to identify multi-omic molecular quantitative traits (QT) perturbed by DNA-level

variations (Song et al., 2019). In comparison with analyzing each molecular trait separately, the joint modeling of multi-omics data

via iProFun provided enhanced power for detecting significant cis-associations shared across different omics data types, and

achieved better accuracy in inferring cis-associations unique to certain type(s) of molecular trait(s). Specifically, we considered three

functional molecular quantitative traits (mRNA expression levels, global protein abundances, and phosphopeptide abundances) for

their associations with DNA methylation. We also adjusted for cis somatic mutations, cis CNAs measured by log ratio and b-allele

frequency, age, gender, smoking status, country of origin and tumor purity when assessing the associations.

We analyzed the tumor sample data from 100 cases with high quality of methylation data in the current cohort collected by CPTAC.

ThemRNA expression levels measured with RNA-seq were available for 19,267 genes, the global protein abundance measurements

were available for 10,699 isoforms of 10,316 genes, and the phosphopeptide abundancewas available for 41,188 peptides from7650

genes. The log ratio and b-allele frequency of CNAs using a segmentation method combining whole genome sequencing and whole

exome sequencingwas obtained for 19,267 genes. TheDNAmethylation levels (beta values) averaging theCpG islands located in the

promoter and 50 UTR regions were available for 16,479 genes. Somatic mutations were called using whole exome sequencing (See

Somatic variant calling section above).

Proteomics and phosphoproteomics data were preprocessed with TMT outlier filtering and missing data imputation to increase

number of features in the Cis Association Analysis. Due to the quantification of extremely small values on the spectrum level,

some extreme values with either positive or negative sign were generated after log2 transform of the TMT ratios. We were concerned

those extreme valueswould lead to instability in imputation of the dataset sincemissing values are dependent on the observed values

of the same samples or same protein/phosphosite. To identify TMT ratio outliers with extreme values, we performed an inter-TMT-

plex t test for each individual protein/phosphosite. For each protein/phosphosite, the TMT ratios of samples within a single TMT-plex

were compared against the TMT ratios of samples in all the other 24 TMT-plexes using a Spearman two-sample t test assuming equal

variance. In the proteomics data, 344 TMT ratios were identified as outliers with inter-TMT t test p values lower than 10e-6; 3053 data

points (0.122% of all observations) were removed from the datasets. And in phosphoproteomics 729 TMT ratios were identified as

outliers with inter TMT t test p value lower than 10e-7; 6458 data points (0.088% of all observations) were removed from the datasets.

Imputation was performed after outlier filtering. We selected proteins/phosphosites with missing rates less than 50%, and imputed

with an algorithm tailored for proteomics data using the DreamAI tool (https://github.com/WangLab-MSSM/DreamAI).

ThemRNA expression levels, global protein and phosphoprotein abundances were also normalized on each gene/phosphosite, to

align the mean to 0 and standard deviation to 1. Tumor purity was determined using ESTIMATE (Yoshihara et al., 2013) from RNA-

seq data.

The iProFun procedure was applied to a total of 4992 genes, including 12 genes measured across all seven data types (mRNA,

global protein, phosphoprotein, CNA – lr, CNA – baf, mutation, DNA methylation) and the rest 4980 genes measured across all six

data types (without mutation data due to mutation rate < 5%) for their cis regulatory patterns in tumors. Specifically, for each

gene, we considered the following regressions:

mRNA �CNA lr + CNA baf + (mutation) + methylation + covariates,

protein �CNA lr + CNA baf + (mutation) + methylation + covariates, and

phosphoprotein �CNA lr + CNA baf + (mutation) + methylation + covariates.

When multiple isoform data was available for a protein or multiple peptide level data was available for a phosphoprotein, we

selected one with the most significant test statistics across all DNA-level alterations (mutation, CNA and methylation) to denote

the gene. The association summary statistics of methylation was applied to iProFun to call posterior probabilities of belonging to

each of the eight possible configurations (‘‘None,’’ ‘‘mRNA only’’ ‘‘global only,’’ ‘‘phospho only’’ ‘‘mRNA & global,’’ ‘‘mRNA & phos-

pho,’’ ‘‘global & phospho’’ and ‘‘all three’’) and to determine the significance of associations (Table S4). The significant genes needed

to pass three criteria: (1) the satisfaction of biological filtering procedures, (2) posterior probabilities > 75%, and (3) empirical false

discovery rates (eFDR)<10%. Specifically, the biological filtering criterion for DNA methylations was that only DNA methylations

with negative associationswith all the types ofmolecular QTswere considered for a significance call. Second, significancewas called

only for posterior probabilities > 75%of a predictor being associated with amolecular QT, by summing over all configurations consis-

tent with the association of interest. For example, the posterior probability of a DNAmethylation being associatedwithmRNA expres-

sion levels was obtained by summing up the posterior probabilities in the following four association patterns – ‘‘mRNA only,’’ ‘‘mRNA

& global,’’ ‘‘mRNA & phospho’’ and ‘‘all three,’’ all of which were consistent with DNA methylation being associated with mRNA

expression. Lastly, we calculated eFDR by considering 100 permutations per molecular QT. In each permutation, we shuffled the

label of the molecular QTs and re-calculated the posterior probabilities of associations via iProFun. For any pre-selected posterior

probability cutoff alpha, eFDR could be calculated by: eFDR = (Averaged no. of genes with posterior probabilities > alpha in permuted

data) / (Averaged no. of genes with posterior probabilities > alpha in original data). We considered a grid of potential alpha values in

the range of 75%–100%, and selected theminimal alpha that satisfied eFDR < 10%. Associations with posterior probabilities > alpha

were thus significant at eFDR 10%.

Among all the genes whose methylation levels were significantly associated with all three molecular traits, Figure 3E annotated

those whose protein abundances significantly differed between tumor and NAT, protein clusters, and immune clusters.
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Differential marker analysis

RNA, protein, and PTM abundance were compared between mutated and WT tumor samples using the Wilcoxon rank-sum test.

P-values were adjustedwithin a data type using the Benjamini-Hochbergmethod. Signed -log10 (p-value) was used to indicate quan-

titative differences betweenmutated andWT tumors where signs ‘‘+’’ and ‘‘-’’ indicated upregulated and downregulated mRNA, pro-

teins, phosphosites, and acetylsites, respectively.

We developed linear models to identify differential markers between several key variables, such as gender, tumor stage and his-

tological subtype, accounting for major covariates such as smoking status, region of origin, and mutational status (EGFR, KRAS,

STK11, TP53 and ALK fusions). The 22 differentially expressed gender-specific proteins (FDR < 0.05, Table S3) showed no coherent

functional annotations, while tumor stage, whether examined at the individual level or aggregated into stages 1, 2 and 3, revealed no

significant markers (FDR < 0.05). Most tumors had typical glandular/acinar morphology; of the remaining six dominant histologic sub-

types, solid and true papillary had numbers permitting statistical comparison. Twelve RNA species, somewith established relevance

to cancer, were differential between these subtypes, including elevation of Krebs cycle enzyme IDH3A in the solid and tyrosine kinase

PTK7 in the papillary subtype, but no proteins were differential after adjustment for confounding variables.

Deriving mutation based signatures

Non-negative matrix factorization (NMF) was used in deciphering mutation signatures in cancer somatic mutations stratified by 96

base substitutions in tri-nucleotide sequence contexts. To obtain a reliable signature profile, we used SomaticWrapper to call mu-

tations from WGS data. SignatureAnalyzer exploited the Bayesian variant of the NMF algorithm and enabled an inference for the

optimal number of signatures from the data itself at a balance between the data fidelity (likelihood) and the model complexity (reg-

ularization) (Kasar et al., 2015; Kim et al., 2016; Tan and Févotte, 2013). After decomposing into three signatures, signatures were

compared against known signatures derived from COSMIC (Tate et al., 2019) and cosine similarity was calculated to identify the

best match.

Continuous Smoking Score

We also sought to integrate count of total mutations, t, percentage that are signature mutations, c, and count of DNPs, n, into a

continuous score, 0 < S < 1, to quantify the degree of confidence that a sample was associated with smoking signature. We referred

to these quantities as the data, namely D =CX TXN, and used A and A’ to indicate smoking signature or lack thereof, respectively.

In a Bayesian framework, it is readily shown that a suitable form is S = 1 / (1 +R), whereR is the ratio of the joint probability of A’ andD

to the joint probability ofA andD. For example, the latter can be written P(A)・P(CjA)・P(TjA)・P(NjA) and the former similarly, where

each term of the former is the complement of its respective term in this expression. Common risk statistics are invoked as priors, i.e.,

P(A) = 0.9 (Walser et al., 2008).

We consider S to be a score because rigorous conditioned probabilities are difficult to establish. (For example, the data types

themselves are not independent of one another and models using common distributions like the Poisson do not recapitulate realistic

variances.) Instead, we adopted a data-driven approach of estimating contributions of each data type based on 2-point fitting of the

extremes using shape functions based on theGaussian error function, erf. The general model for the data typeG is P(GjA) = [x・erf (g/

y) + 1] / (x + 2), with the resulting fitted values being the following: for total mutations G = T and (x,y) = (4028, 1000) when g = t; for

percentage that are signature mutations G = C and (x,y) = (200, 50) when g = c; and for number of DNPs G = N and (x,y) = (30, 4)

when g = n. Each of these parametric combinations adds significant weight above a linear contribution as the count for its respective

data type increases above the average. For example, for g/yz0.6, weights for each data type are around 50% higher than their cor-

responding linear values would be.

The shape function for T includes an expected-value correction for purity, u. (Correction for C is implicit, as it is a percentage of T.)

Namely, assuming mutation-calling does not capture all mutations because of impurities, t is taken as the observed number of mu-

tations divided by a purity shape function, f, where f % 1. Although one might model f according to common characteristics of mu-

tation callers, e.g., close to 100% sensitivity for pure samples and very low calling rate for low variant allele fractions (VAFs), the purity

estimates for these data are based on RNA-seq and are not highly correlated with total mutation counts. Consequently, we use a

weaker, linear shape function, f = 0.3・u + 0.7, which does not strongly impact the adjustment of low-purity samples.

Determination of Stemness score

Stemness scores were calculated as previously described (Malta et al., 2018). To calculate the stemness scores based on mRNA

expression, we built a predictive model using one-class logistic regression (OCLR) (Sokolov et al., 2016) on the pluripotent stem

cell samples (ESC and iPSC) from the Progenitor Cell Biology Consortium (PCBC) dataset (Daily et al., 2017; Salomonis et al.,

2016). For mRNA expression-based signatures, to ensure compatibility with the CPTAC LUAD cohort, we first mapped the gene

names from Ensembl IDs to Human Genome Organization (HUGO), dropping any genes that had no such mapping. The resulting

training matrix contained 12,945 mRNA expression values measured across all available PCBC samples. To calculate the mRNA-

based stemness index (mRNASi) we used RPKM mRNA expression values for all CPTAC LUAD and NAT samples (uq-rpkm-log2-

NArm-row-norm.gct). We used the function TCGAanalyze_Stemness from the package TCGAbiolinks (Colaprico et al., 2016) and

followed our previously-described workflow (Ho et al., 1987), with ‘‘stemSig’’ argument set to PCBC_stemSig.

Immune Subtyping and downstream analysis

The abundances of 64 different cell types for lung tumors and NAT samples were computed via xCell (Aran et al., 2017; (https://xcell.

ucsf.edu/) using log2 (UQ) RPKM expression values. Table S5 contains the final score computed by xCell of different cell types for all

tumor and NAT samples. Consensus clustering on xCell signatures performed in order to identify groups of samples with the same
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immune/stromal characteristics. Only cells that were detected in at least 5 patients (FDR < 1%) were utilized. Consensus clustering

was performed using the R package ConsensusClusterPlus (Monti et al., 2003; Wilkerson and Hayes, 2010). Specifically, 80% of the

original samples were randomly subsampled without replacement and partitioned into 3major clusters using the K-Means algorithm.

For estimating Tumor Purity, Stromal and Immune Scores, in addition toXcell, we utilized ESTIMATE (Yoshihara et al., 2013) on

RNA-seq to infer immune and stromal scores and TSNet for tumor purity (Petralia et al., 2018).

ssGSEA (Barbie et al., 2009) was utilized to obtain pathway scores based on RNA-seq and global proteomics data using the R

package GSVA (Hänzelmann et al., 2013). A Wilcoxon test was performed subsequently to find pathways differentially expressed

between cold-tumor-enriched and hot-tumor-enriched subgroups. P-values were adjusted via the Benjamini-Hochberg procedure.

Table S5 shows genes/proteins and pathways differentially expressed based on RNA-seq and global proteomics abundance.

To determine mutations that are associated with xCell signatures, raw xCells signatures were modeled as a linear function of mu-

tation status. For this analysis, only mutations that occur in more than 15 samples across all tumor samples were considered (i.e., 66

genes). P-values were adjusted for multiple comparisons using Benjamini-Hochberg correction and the association test results are

listed in Table S5.

In addition to exploring the effect of STK11 mutation itself, we assessed whether any other mutation was associated with immune

infiltration given STK11 status. A linear model was developed in which the immune score from ESTIMATE was modeled as a function

of STK11 mutation and the mutation status of the 66 genes carrying more than 15 mutations each. P values were corrected using the

Benjamini-Hochberg adjustment. The only mutation significantly associated (positively) with immune score given STK11 mutation

status was KRAS mutation at FDR 10%.

Determining Immune evasive mechanisms

Immune evasion is a process wherein tumor cells employ multiple mechanisms to evade anti-tumor immune response, facilitating

tumor cell survival and evolution. Immune checkpoint blockade therapy has emerged as a treatment strategy for cancer patients,

based on harnessing the anti-tumor immune response genes (Abril-Rodriguez and Ribas, 2017). However, a significant number of

patients have failed to respond to immunomodulation strategies such as checkpoint inhibitors, likely due to tumor-specific immuno-

suppressive mechanisms and incomplete restoration of adaptive immunity (Achyut and Arbab, 2016; Allard et al., 2016; Jerby-Arnon

et al., 2018; Kozuma et al., 2018). We postulate that two main factors contribute to the failure of immune therapy: (i) the insufficient

activation of the immune response, and (ii) the evolutionarily selected mechanisms of immune evasion. We also hypothesized that

activation of the adaptive immune system and sensitivity to checkpoint therapy principally depends on upregulation or downregu-

lation of IFNG axis – a pathways of 15 genes, which is composed of proteins expressed primarily in cancer cells: IFNG receptors

(IFNGR1, IFNGR2); JAK/STAT-signaling component (JAK1, JAK2, STAT1, STAT3, IRF1); antigen presenting (HLA-A, HLA-B, HLA-

C, HLA-E, HLA-F, HLA-G); and checkpoint proteins (PD-L1/PD1). Thus, non-responder tumors are either those that are invisible

to immune cells because of a suppressed IFNG axis, or those with the IFNG axis activated along with activated immune evasion

that prevents leukocyte-driven cancer cell death. Following this idea, we arrived at a general protocol to reveal proteins involved

in immune evasion and determine potential targets for combination therapy. First, we inferred relative activation of the IFNG axis

pathway across tumors. We ranked tumor proteins in descending order of abundance, then determined for each IFNG pathway pro-

tein the probability that it would by random chance occupy its observed or a higher position in that list. An individual protein would

therefore have a smaller probability (be enriched toward the top of the list) the higher it was on the list. To assess whether the set of

IFNG pathway proteins were significantly overrepresented in a sample, the enrichment probabilities for individual constituent pro-

teins were geometrically averaged using Fisher’s exact test. The process was then repeated, this time combining individual proba-

bilities that a protein was enriched toward the bottom of the abundance list to assess for significant underrepresentation of the IFNG

pathway in a sample. The inferred pathway activation scorewas defined as the negative log of the ratio of these two probabilities. This

score is positive when pathway proteins occur in the top half of the abundance list, and negative when confined to the bottom. Sec-

ond, we determined proteins that are significantly upregulated with inferred activation of the IFNG axis and have known immune

evasion role (markers of MDSC (Achyut and Arbab, 2016), adenosine signaling signature (Allard et al., 2016), IDO1 pathway (Kozuma

et al., 2018; Liu et al., 2018; Takada et al., 2019; Zhang et al., 2019) or have potential therapeutic value as targets of drugs from Drug

Bank (Frolkis et al., 2010; Jewison et al., 2014).

Identifying histological features

LUAD tissue histopathology slides were first downloaded from The Cancer Imaging Archive (TCIA) database. The slides and their

corresponding per-slide level labels were then separated into training (80%), validation (10%), and test sets (10%) at the per-patient

level. Each slide was then tiled into 299-by-299-pixel pieces with overlapping areas of 49 pixels from each edge, omitting those with

over 30%background. Tiles of each set were packaged into a TFrecord file. Then, the InceptionV3-architectured convolutional neural

network (CNN) was trained from scratch and the best performing model was picked based on validation set performance. The per-

formance of themodel was evaluated by statistical metrics (area under ROC, area under PRC, and accuracy) on per-slide and per-tile

levels. Lastly, the trained model was applied to the test set, and the per-tile prediction scores were aggregated by slides and shown

as heatmaps. 10,000 tiles were randomly selected for visualization from the test set of 137,990 tiles cropped from 36 slides of 11

individual patients. The test data were propagated through the trained model to obtain positive prediction scores, the probability

of being a STK11mutation positive case estimated by the deep learningmodel. Additionally, for each test example, activation scores

of the fully-connected layer immediately before the output layer, a vector of 2,048 elements, were extracted as representation of the

input sample in perspective of the predictive model. The activation scores of 10,000 sample tiles were further reduced to two-dimen-
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sional representations by tSNE. Overlay of positive prediction scores on sample points showed distinct clusters for predicted positive

(orange) and predictive negative (blue) cases. Examples of true positive (red outline) and true negative (black outline) tiles exhibited

different histologic features (Figure 5E), such that the STK11 WT tiles correctly recognized by the model harbored abundant inflam-

matory cells, and STK11 mutant tiles showed typical adenocarcinoma characteristics.

Independent component analysis

As previously described (Liu et al., 2019), Independent component analysis (ICA) was run 100 times with random initial values on 110

tumor samples. In each run, 110 independent components (equal to the number of samples) were extracted to obtain as much in-

formation as possible. All components were then pooled and grouped into 110 clusters using K-medoidsmethod and Spearman cor-

relation as dissimilarity measures. Each independent component (and a sample point submitted to the clustering algorithm) was a

vector comprising weights of all genes in the original data. Genes that contributed heavily to a component were assigned large co-

efficients that could serve as a pathway-level molecular signature. Consistent clusters of independent components would exhibit

large intra-group homogeneity (average silhouette width > 0.8) and are composed of members generated in different runs (> 90), indi-

cating that similar signals were extracted recurrently when the algorithmwas initiated from different values. The centroids of the clus-

ters were considered as representative of a stable signature, and mean mixing scores (activity of each signature over all samples) of

each cluster were used to represent the activity levels of the corresponding signature in each sample. To investigate the correlation

between blindly extracted features and known clinical characteristics, the corresponding mixing scores for all members of a compo-

nent cluster were regressed against 46 clinical variables, and the count of significant correlations (p < 10�5, linear regression, P value

controlled for multiple testing at the 0.01 level) indicated association between the particular molecular signature and clinical variable

pair. Signatures that showed a high percentage of significant correlations for all members and large average –log10(p-value) values

within the cluster were considered to be associated with the clinical feature. Genes heavily weighted in the cluster centroid coeffi-

cients vector may thus shed light on molecular mechanisms underlying the clinical feature. One highly consistent signature (average

cluster silhouette width 0.97, 100 members produced by 100 different runs) was found to be significantly associated with STK11mu-

tation status, with an average –logP value of 5.7.

Mutation-based cis- and trans-effects
We examined the cis- and trans-effects of 18 mutations that were significant in a previous large-scale TCGA LUAD study (Cancer

Genome Atlas Research Network, 2014) on the RNA, proteome, and phosphoproteome of cancer-related genes (Bailey et al.,

2018). After excluding silent mutations, samples were separated into mutated and WT groups. We used the Wilcoxon rank-sum

test to report differentially expressed features (RNA, proteins, phosphosites and acetylsites) between the two groups. Differentially

enriched features passing an FDR < 0.05 cut-off were separated into two categories based on cis- and trans- effects.

Multi-omic Outlier Analysis

We calculated the median and interquartile range (IQR) values for phosphopeptide, protein, gene expression and copy number al-

terations of known kinases (N = 701), phosphatases (N = 135), E3 ubiquitin ligases (N = 377) and de-ubiquitin ligases (N = 87) using

TMT-based global phosphoproteomic and proteomic data, RNA-Seq expression data or CNA data. Outliers were defined as any

value higher than the median plus 1.5x IQR. Phosphopeptide data was aggregated into genes by summing outlier and non-outlier

values per sample. Outlier counts were used to determine enriched genes in a group of samples at each data level. First, genes

without an outlier value in at least 10% of samples in the group of interest were filtered out. Additionally, only genes where the fre-

quency of outliers in the group of interest was higher than the frequency in the outgroup were considered in the analysis. The group of

interest was compared to the rest of the samples using Fisher’s exact test on the count of outlier and non-outlier values per group.

Resulting p values were corrected for multiple comparisons using the Benjamini-Hochberg correction. Druggability was determined

for each gene using the drug-gene interaction database (DGIdb)(Cotto et al., 2018).Themean impact of shRNA- or CRISPR-mediated

depletion of each gene on survival and proliferation in lung cancer cell lines was also visualized based on previous studies (Barretina

et al., 2012; Tsherniak et al., 2017).

Pathway analysis reported in Figure 6

In the set of tumor samples, the high smoking score (HSS) subset consists of 58 samples, while the low smoking score (LSS) subset

contains 49 samples. There are 52 NAT samples with paired HSS tumor samples, and 46 NAT samples with paired LSS tumor

samples.

We used gene sets of molecular pathways from KEGG (Kanehisa and Goto, 2000), Hallmark (Liberzon et al., 2015) and Reactome

(Croft et al., 2014) databases to compute single sample gene set enrichment scores (Barbie et al., 2009) for each sample. To compute

pathway HSS versus LSS differential scores for both tumor and NAT, we ran two one-sided Wilcoxon rank-sum tests (greater than,

and lesser than) on HSS versus LSS sets of samples and performed Benjamini-Hochberg correction on computed p-values (FDR).

The differential score (Q) is obtained as signed -log10(FDR) from the lower of the two p-values derived from two one-sided Wilcoxon

rank-sum tests. The signs ‘‘+’’ and ‘‘-’’ indicated upregulated and downregulated pathways respectively, in HSS. Differential scores

were computed for both proteome (for the set of 7,136 proteins with no missing values) and transcriptome (18,099 genes).

To select the six groups of pathways with characteristic HSS versus LSS proteome behavior in tumor and NAT, we used the FDR <

0.05 for differential behavior and FDR> 0.3 for the absence of differential behavior. For specific pathway groups, this amounted to the

following conditions: group 1: Q(Tumor) > 1.301 & Q(NAT) < �1.301; group 2: Q(Tumor) < �1.301 & Q(NAT) > 1.301; group 3: Q(Tu-

mor) > 1.301 &Q(NAT) > 1.301; group 4: Q(Tumor) <�1.301 &Q(NAT) <�1.301; group 5: Q(Tumor) > 1.301 & jQ(NAT)j < 0.523; group

6: Q(Tumor) < �1.301 & jQ(NAT)j < 0.523.
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Tumor-NAT related analysis

PCA was performed on RNA (18,099), protein (10,165), phosphosites (40,845), and acetylsites (6,984) datasets using the factoextra

(Bioconductor, version 1.0.5) package in R (3.1.2). Features with no variance were removed.

To identify Tumor versus NAT differential markers, a Wilcoxon rank sum test was applied to TMT-based global proteomic data to

determine differential abundance of proteins between tumor and NAT samples. Proteins with log2-fold-change (FC)> 1 in tumors and

Benjamini-Hochberg FDR < 0.01 were considered to be tumor-associated proteins. Biomarker candidate selection was more strin-

gent, requiring both protein log2 FC > 2 and overexpression at the RNA level (log2FC > 1, FDR < 0.05). Immunohistochemistry-based

antibody-specific staining scores in lung tumors were obtained from the Human Protein Atlas (HPA, https://www.proteinatlas.org), in

which tumor-specific staining is reported in four levels, i.e., high, medium, low, and not detected. The protein-specific annotations

such as protein class, found in plasma, or ontology were obtained from HPA, Uniprot and GO. Proteins of specific type or function

such as transcription factors, enzymes, transporters, and transmembranes were identified. ‘‘Plasma proteins’’ represent proteins

found in plasma, whereas ‘‘secreted’’ have been annotated as secreted/exported outside the cell. FDA-approved drugs targeting

the protein or drugs under clinical trial were so designated. Given the role of epithelial-to-mesenchymal transition (EMT) in metas-

tasis, proteins overlapping with hallmarks of EMT gene sets were shown separately. Proteins differentially expressed between tu-

mors and NATs (Benjamini-Hochberg FDR < 0.01, Wilcoxon signed rank test) and having < 50% missing values were used for

pathway enrichment analysis with GSEA (Subramanian et al., 2005) as implemented in WebGestalt (Wang et al., 2017). Similar an-

alyses were performed on the phosphoproteome and acetylproteome to detect tumor-specific phosphosites and acetylsites,

respectively.

To identify, mutant phenotype-specific protein biomarkers, four driver mutant phenotypes were considered; TP53 (n = 52), EGFR

(n = 36), KRAS (n = 29), and STK11 (n = 17). A Wilcoxon rank sum test was performed between tumor and paired NAT samples using

only samples with mutations. Similar analyses were performed on samples with wild type (WT) phenotype only (TP53WT = 49,

EGFRWT = 65, KRASWT = 72, STK11WT = 84). Differentially expressed proteins in a given mutant phenotype were selected based

on > 4-fold difference and Benjamini-Hochberg adjusted p value (FDR) < 0.01. Further, mutant-specific proteins were filtered using

log2 (median difference between mutant and WT) > 1.5 to remove noise from corresponding WT samples. The filtered proteins were

nominated as mutant-specific biomarkers if their expression was upregulated in 80% of tumor samples compared to matched

normal samples. The fold changes between tumor and matched normal are shown in heatmaps for identified protein biomarkers

in each mutant phenotype.

Phosphorylation-driven signature analysis

Based on the results of the Tumor-NAT related analysis described above, we performed phosphosite-specific signature enrichment

analysis (PTM-SEA) (Krug et al., 2018) to identify dysregulated phosphorylation-driven pathways in tumors compared to paired

normal adjacent tissues (NATs). To adequately account for both magnitude and variance of measured phosphosite abundance,

we used p-values derived from application of the Wilcoxon rank-sum test to phosphorylation data as ranking for PTM-SEA. To

that end, p-values were log-transformed and signed according to the fold change (signed -log10 (p-value)) such that large positive

values indicated tumor-specific phosphosite abundance and large negative values NAT-specific phosphosite abundance.

logPsite = � log10ðp� valuesiteÞ � signðlog2ðfold , changesiteÞÞ
PTM-SEA relies on site-specific annotation provided by PTMsigDB and thus a single site-centric data matrix data is required such

that each row corresponds to a single phosphosite. We note that in this analysis the data matrix comprised a single data column (log

transformed and signed p-values of the tumor versus NAT comparison) and each row represented a confidently localized phospho-

site assigned by Spectrum Mill software.

We employed the heuristic method introduced by Krug et al. (Krug et al., 2018) to deconvolute multiple phosphorylated peptides to

separate data points (log-transformed and signed p-values). Briefly, phosphosites measured on different phospho-proteoform pep-

tides were resolved by using the p-value derived from the least modified version of the peptide. For instance, if a site T4 measured on

a doubly phosphorylated (T4, S8) peptide (PEPtIDEsR) was also measured on a mono-phosphorylated version (PEPtIDESR), we as-

signed the p-value derived from themono-phosphorylated peptide proteoform to T4, and the p-value derived from PEPtIDEsR to S8.

If only the doubly phosphorylated proteoform was present in the dataset, we assigned the same p-value to both sites T4 and S8.

We queried the PTM signatures database (PTMsigDB) v1.9.0 downloaded from http://prot-shiny-vm.broadinstitute.org:3838/

ptmsigdb-app/ using the flanking amino acid sequence (+/� 7 aa) as primary identifier. We used the implementation of PTM-SEA

available on GitHub (https://github.com/broadinstitute/ssGSEA2.0) using the command interface R-script (ssgsea-cli.R). The

following parameters were used to run PTM-SEA:

weight: 1

statistic: ‘‘area.under.RES’’

output.score.type: ‘‘NES’’

nperm: 1000

min.overlap: 5

correl.type: ‘‘rank’’

The sign of the normalized enrichment score (NES) calculated for each signature corresponds to the sign of the tumor-NAT log fold

change. P-values for each signature were derived from 1,000 random permutations and further adjusted for multiple hypothesis
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testing using themethod proposed byBenjamini & andHochberg (Benjamini andHochberg, 1995). Signatureswith FDR-corrected p-

values < 0.05 were considered to be differential between tumor and NAT.

For mutational subtype analysis (EGFR, KRAS, TP53, STK11) we derived a residual enrichment score between mutated and WT

samples by separately applying PTM-SEA to mutated and WT samples to derive signature enrichment scores from which we calcu-

lated the residuals via linear regression (mut �non-mut). From the resulting distribution of residual enrichment scores we identified

outliers using the ± 1.5*IQR definition used in box and whisker plots.

Variant Peptide Identification

WeusedNeoFlow (https://github.com/bzhanglab/neoflow) for neoantigen prediction (Wen et al., 2020). Specifically, Optitype (Szolek

et al., 2014) was used to find human leukocyte antigens (HLA) in the WES data. Then we used netMHCpan (Jurtz et al., 2017) to pre-

dict HLA peptide binding affinity for somatic mutation–derived variant peptides with a length between 8-11 amino acids. The cutoff of

IC50 binding affinity was set to 150 nM. HLA peptides with binding affinity higher than 150 nM were removed. Variant identification

was also performed at both mRNA and protein levels using RNA-Seq data and MS/MS data, respectively. To identify variant pep-

tides, we used a customized protein sequence database approach (Wang et al., 2012). We derived customized protein sequence

databases frommatchedWES data and then performed database searching using the customized databases for individual TMT ex-

periments. We built a customized database for each TMT experiment based on somatic variants from WES data. We used Custom-

prodbj (Wen et al., 2020) (https://github.com/bzhanglab/customprodbj) for customized database construction. MS-GF+ was used

for variant peptide identification for all global proteome and phosphorylation data. Results from MS-GF+ were filtered with 1%

FDR at PSM level. Remaining variant peptides were further filtered using PepQuery (http://www.pepquery.org) (Wen et al., 2019)

with the p-value cutoff % 0.01. The spectra of variant peptides were annotated using PDV (http://www.zhang-lab.org/) (Li

et al., 2019).

Cancer/testis Antigen Prediction

Cancer/testis (CT) antigens were downloaded from the CTdatabase (Almeida et al., 2009). CT antigens with a 2-fold increase in tumor

from NAT in at least 10% of the samples were highlighted.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA and Protein quantification
Transciptome and proteome quantification has been described under ‘‘RNAseq Gene Expression and miRNAseq Quantification and

Analysis’’ and ‘‘Proteomics Data Analysis: Protein-peptide identification, phosphosite / acetylsite localization, and quantification.’’

The details of statistical analysis are presented within the text and the corresponding STAR Method sections.

ADDITIONAL RESOURCES

The CPTAC program website, detailing program initiatives, investigators, and datasets, is found at https://proteomics.cancer.gov/

programs/cptac.

A website for interactive visualization of the multi-omics dataset is available at: http://prot-shiny-vm.broadinstitute.org:3838/

CPTAC-LUAD2020/. The heatmap depicts somatic copy number aberrations, mRNA, protein, phosphosite and acetylsite abun-

dances across 100 tumor-NAT pairs for which all data types were available. Copy number alterations are relative to matched normal

blood samples and are on log2(CNA)-1 scale. For other data types the heatmap depicts abundances relative to paired normal adja-

cent tissue (NAT).

All processed data matrices will also be available at LinkedOmics (Vasaikar et al., 2018) (http://www.linkedomics.org), where

computational tools are available for further exploration of this dataset.
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Figure S1. Experimental Workflow and Data Quality Metrics, Related to Figure 1

(A) Schematic representation showing sample processing steps. Fresh frozen tumors and their matched normal-adjacent tissues (NATs) were cryopulverized and

aliquoted for genomics and proteomics analyses before undergoing comprehensive proteogenomic characterization, facilitating uniformity in input samples.

(B) Schematic representation of the workflows used for proteome, phosphoproteome and acetylproteome analyses. Tandem mass tags (TMT) were used to

multiplex 9 samples (4 tumors and their matched NATs, in addition to a 9th sample, an unpaired tumor) and 1 common reference (pool of all tumors andNATs) that

was used to link multiple TMT10 plexes. Matched tumor / NAT pairs were included in the same TMT plex.

(C) Pearson similarity matrices showing intra- and inter-plex reproducibility across 4 interspersed comparative reference (CompRef) process replicates for

proteome, phosphoproteome and acetylproteome. TheCompRef process replicates demonstrated excellent reproducibility (Pearson Correlation, Proteome: R =

0.91, Phosphoproteome: R = 0.88, Acetylproteome: R = 0.73) and consistent identifications across several months of data acquisition time.

(D) Bar plot showing consistent numbers of identified and quantified proteins, phosphosites and acetylsites across the 25 plexes used for analyzing 212 tumors

and NATs.

(E) Principal component analysis (PCA) plot representation of proteome, phosphoproteome and acetylproteome separately for tumors andNATs, colored by TMT

plex (n = 25). PCA was based on features that were fully quantified across all 25 TMT plexes.

(F) Sample-wise Pearson correlation between copy number alteration (CNA) and RNA, and between CNA and Proteome. The dark red-colored diagonal

demonstrates the absence of sample swaps.

(G) Cophenetic correlation coefficient (y axis) calculated for a range of factorization ranks (x axis). The maximal cophenetic correlation coefficient was observed

for rank K = 4 as shown in red.

(H) Silhouette plot for K = 4. This plot indicates the quality of cluster separation.

(I) Non-negative matrix factorization (NMF) clustering applied individually to proteome, phosphoproteome and acetylproteome. Each heatmap shows the

maximum-normalized membership score for each sample (x axis) in each cluster (y axis) - essentially, the strength of a sample’s ‘‘belongingness’’ to each of the

clusters. The proteome cluster overlaps substantially with the multi-omics clusters depicted in Figure 1E, but divergence is seen in both the phosphoproteome

and acetylproteome, with additional substructure in the phosphoproteome. Color schematics for the different annotations and data rows are detailed in the

bottom panel.

(J) Louvain clustering ofmiRNA showed parallels with NMF results but identified five clusters. miRNA cluster 2wasmarkedly enriched for tumors frommulti-omics

cluster C1, in turn alignedwith proximal-inflammatory RNA signatures, whilemiRNA cluster 3 was enriched for theSTK11mutant subset of the NMFC3, proximal-

proliferative cluster. While the remaining three miRNA clusters had mixed composition, miRNA cluster 5 was markedly enriched for ALK fusion-driven tumors,

including all 5 EML4-ALK as well as the HMBOX1-ALK fusions.
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Figure S2. Genomic Sequence Evidence for ALK Rearrangements and ALK Immunohistochemistry, Related to Figure 2

(A) ALK gene fusion transcript architecture constructed from RNaseq data and fusion evidence for ALK fusion transcripts. Red arrows on the ALK and various 50

partner genes’ schematic diagrams indicate fusion breakpoints observed in the respective index samples. Blue arrows indicate gene orientation and numbers

indicate genomic coordinates from GRCh38/hg38 assembly.

(B) Identification of the precise genomic breakpoints fromwhole genome sequencing (WGS) data for ALK gene fusions. WGS evidence supporting the underlying

genomic rearrangements in the ALK locus is indicated in red and blue; numbers indicate genomic coordinates from the GRCh38/hg38 assembly.

(C) Immunohistochemistry reveals upregulation of both total ALK and the ALK Y1507 phosphosite specifically in the tumor epithelia of ALK fusion-positive

samples. No staining was seen in RET or ROS1 fusion samples or in matched NATs.
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Figure S3. Multi-Omics Integration, Related to Figure 3
(A) Density plots showing distribution of sample-wise RNA-protein Spearman correlations separately for tumors (red) and NATs (blue).

(B) Differential RNA and protein correlation between tumors and paired NATs is seen in gene products involved in Cell proliferation and transcriptional regulation,

RNA splicing, Cell division, Beta catenin signaling and Chromosomal condensation (p value < 10�3). We hypothesize that, in NATs, homeostatic biological

activities such as cell maintenance and homeostasis, circadian rhythm and survival predominate and are mediated by proteins the abundances of which reflect

mRNA transcript levels, post-transcriptional processes, and post-translational stability. While the same components are at play in tumors, their more dynamic

context and highly proliferative state leads to more consistent kinetics and coherent expression of RNA and proteins (Carpy et al., 2014; Jovanovic et al., 2015;

Komili and Silver, 2008).

(C) Correlation plots of CNA versus Phosphoprotein and CNA versus Acetylprotein expression. Significant (FDR < 0.05) positive and negative correlations are

indicated in red and green, respectively. CNA-driven cis-effects (consequence of CNA on the same locus) appear as the red diagonal line; trans-effects

(consequence of CNA on genes encoded elsewhere) appear as vertical red and green lines. The accompanying histograms show the number of significant (FDR <

0.05) cis- and trans-events corresponding to the indicated genomic loci (upward plot) as well as the overlap between CNA-RNA and CNA-protein events

(downward plot).

(D) Heatmap showing 2 dominant clusters of DNA methylation, defined primarily by tumors and NATs. LUAD tumors tend to be significantly more highly

methylated than their counterpart NATs (p value < 0.0001, two-sided Wilcoxon rank-sum test).

(E) Consensus clustering of CpG island methylator phenotype (CIMP) defines three stable clusters representing high (red), intermediate (yellow) and low (blue)

CIMP phenotypes (respectively referred to as CIMP+, �1, and �2 in Table S4). Both the overall tripartite structure and the highlighted genes also showed a

pattern consistent with a previous report (Cancer Genome Atlas Research Network, 2014)
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Figure S4. Impact of Somatic Mutations on Proteogenomic Landscape of Tumors, Related to Figure 4

(A) The cis- (circles) and trans- (squares) effects of select mutated genes on the RNA expression of cancer-associated genes. The red and blue scale represents

the median difference in RNA expression between samples with and without mutations. Size represents significance.

(B) Lollipop plot showing KEAP1 mutations identified in this LUAD cohort. Twelve LUAD tumors harbored KEAP1 mutations, including missense mutations and

truncations distributed across the entire length of the protein. The colors of the lollipops indicate the type of mutation and numbers represent amino acid po-

sitions. Protein domains are indicated by different colors.

(C) Boxplots showing KEAP1 and NFE2L2 RNA expression and KEAP1 protein expression in KEAP1 wild-type (WT) and mutant samples. Also shown is the

downregulation of KEAP1 in KEAP1 mutant samples, seen at the protein but not at the RNA level.

(D) Volcano plot showing differentially regulated proteins in KEAP1WT versusmutant samples. These differential proteins underlie the pathway analysis shown in

Figure S4F.

(E) Volcano plot showing differentially regulated phosphosites in KEAP1 WT versus mutant samples.

(F) Pathways enriched among proteins differentially expressed between KEAP1mutant and WT tumors. Significant enrichment of the oxidative stress response

supports activation of NRF2 signaling in these samples.

(G) Boxplots showing unchanged PTPN11 protein and significantly (FDR < 0.05) elevated phosphopeptide expression (Y546 and Y584) in ALK fusion relative to

wild-type samples. Various activating functions have been proposed for these phosphorylation sites, including directly driving the active conformation (Bennett

et al., 1994; Lu et al., 2001) and serving as GRB2 docking sites (Bennett et al., 1994; Cunnick et al., 2002; Okazaki et al., 2013; Vogel and Ullrich, 1996). The

PTPN11/Shp2 adaptor protein Grb2-associated binder-1 (GAB1) (Montagner et al., 2005) was also significantly upregulated in ALK fusion- driven tumors

(Figure S4H).

(H) GAB1 protein expression in samples with and without ALK fusion.

(I) Protein-level gene-set enrichment (GSEA) pathway comparison of EGFR- and KRAS-driven LUAD tumors showing disparity in complement and clotting

cascades, with upregulation of both in KRAS and downregulation in EGFRmutant samples. This analysis compares gene-set enrichment in KRASmutant versus

wildtype to EGFR mutant versus wildtype, where ‘‘wildtype’’ in each case excludes both KRAS and EGFR mutants.

(J) Heatmaps show the phosphatase, ubiquitinase and deubiquitinase outliers enriched (FDR < 0.2) at the phosphoprotein, protein, RNA and CNA levels (rep-

resented by columns under each gene name) and their association with mutations in select genes (EGFR, KRAS, TP53, STK11, KEAP1, EML4-ALK). Cancer

Dependency Map-supported (https://depmap.org) panels on the left show log2 transformed relative survival averaged across all available lung cell lines after

depletion of the indicated gene (rows) by RNAi or CRISPR. Druggability based on the Drug Gene Interaction Database (http://www.dgidb.org/) is indicated

alongside the availability of FDA-approved drugs. The log-transformed druggability score indicates the sum of PubMed journal articles that support the drug-

gene relationship. This implementation of outlier detection complements other analytic approaches by identifying potentially druggable alterations that occur in

personalized fashion; hence, for example, PTPN11 Y62 did not appear as an ‘‘outlier’’ phosphatase in EGFR mutant tumors (N = 38) because of its uniform high

expression in that group.

ll
OPEN ACCESSResource

https://depmap.org
http://www.dgidb.org/


(legend on next page)

ll
OPEN ACCESS Resource



Figure S5. Immune Landscape in LUAD, Related to Figure 5

(A) Heatmap of expression levels of proteins most correlated with inferred activation of the Interferon gamma (IFNG) axis. Proteins involved in immune evasion

signatures and proteins annotated as drug targets (as defined by: https://www.drugbank.ca) are highlighted by vertical bars on the left side of the figure.

Important immune-relatedmarkers observed includeWARS, LCK, CD4, TYMP, B2M (upregulated in the HTE cluster) and PTGR2, PDE4D, MAOA (upregulated in

the CTE cluster). LCK and CD4 are members of the supramolecular lymphocyte regulatory complex that includes PTPRCAP, which showed differential DNA

methylation in our analysis (Figures 3F and 3G). Whether these derive from cancer cells or immune infiltrates is unclear.

(B) The heatmap shows abundance levels (converted to Z-scores) of proteins of the IFNG axis pathway (Abril-Rodriguez and Ribas, 2017) and the Surfactant

Metabolism pathway from the Reactome database (Fabregat et al., 2018). The IFNG axis pathway determines activation of the adaptive immune system; 11

proteins of the IFNG axis were detected in global proteomics as presented in the heatmap (red vertical bar). The Surfactant Metabolism pathway was identified

among the top three pathways anti-correlatedwith inferred activation of the IFNG axis, with 14 of 30 pathway proteins, including 5 of 6 primary surfactant proteins

(SFTP-A1, A2, B, C, and D), detected by global proteomics. Lung surfactant, responsible for preventing alveolar collapse at end-expiration, can also regulate

pulmonary innate immunity (Whitsett, 2014), increasing immunosuppression (Pastva et al., 2007; Nayak et al., 2012). Prior studies have shown an association

between genetic polymorphisms of surfactant proteins and lung carcinoma (Seifart et al., 2005) and bronchopulmonary dysplasia (Pavlovic et al., 2006), with

genetic defects in SFTPA2 especially associated with lung cancer development (Wang et al., 2009). The observed upregulation of surfactant proteins in CTE lung

tumors supports their immune-suppressive effects in lung cancer.

(C) Heatmap depicting normalized enrichment scores (NES) of Hallmark gene sets (Liberzon et al., 2015) in each multi-omic cluster. To calculate cluster-specific

NES we projected the matrix of multi-omic feature weights (W) derived by non-negative matrix factorization (NMF) onto gene sets using single-sample Gene Set

Enrichment Analysis (ssGSEA) (Barbie et al., 2009). To derive a single weight for each gene measured across multiple omics data types (protein, RNA, phos-

phosite, acetylsite) we retained the weight with maximal absolute amplitude. Only gene sets significant in at least one cluster are shown (FDR < 0.01).

(D) Boxplot showing the distribution of the non-synonymous somatic mutations in each multi-omic cluster.

(E) Flow diagram showing the workflow for developing and testing a deep learning algorithm to identify STK11mutant samples based on hematoxylin and eosin

stained histopathology slides. (I) LUAD tumor histopathology slides corresponding to analyzed tissue fragments were downloaded from The Cancer Imaging

Archive (TCIA) database; (II) slides and corresponding per-slide level labels were separated into training (80%), validation (10%), and test sets (10%) at the per-

patient level; (III) slides were tiled into 299-by-299-pixel pieces with overlapping areas of 49 pixels from each edge, omitting those with over 30% background.

Tiles of each set were packaged into a TFrecord file; (IV) the InceptionV3-architectured convolutional neural network (CNN) was trained from scratch and the best

performing model was picked based on validation set performance; (V) the model was applied to the test set, and the per-tile prediction scores were aggregated

by slides and shown as heatmaps. The last-layer activations of 10000 randomly sampled tiles were exported for feature visualization on t-Distributed Stochastic

Neighbor Embedding (t-SNE) (Figure 5E); (VI) counts and statistical metrics for area under receiver operating characteristic (AUROC), area under Precision-Recall

Curve (AUPRC), and accuracy on per-slide and per-tile levels were calculated with bootstrapped 95% confidence interval in parentheses. Table: the model

achieved per-slide level AUROC of 0.961 and per-tile level AUROC of 0.892 in predicting STK11 mutation. Slide-level predictive accuracy was 94%.

(F) To extract pathway-level proteomic features in an unsupervised manner, protein abundance measurements of 110 tumor samples were submitted to in-

dependent component analysis following the method proposed in (Liu et al., 2019). One signature (IC_068) showed significant associations with STK11mutation

status (average log10 nominal P values within component cluster:�5.7). Averagemixing scores for IC_068 represented ‘activity’ of the meta-gene level signature

in each of the samples. Raw protein abundance values of genes contributing heavily to the signature (coefficient larger than 3) were shown in the heatmap.

(G) Heatmaps showing protein (upper) and RNA expression (lower) of 16 gene products associated with neutrophil degranulation. STK11 and its partner STRADA

are also shown.
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Figure S6. Impact of Smoking on Somatic Mutations, Related to Figure 6

(A) Bar plots showing distinct mutational signatures identified in 110 LUAD tumors. Somatic single nucleotide variants (SNVs) were determined from WGS data

using SomaticWrapper, and 10 distinct mutation signatures were subsequently identified using SignatureAnalyzer (Kim et al., 2016); STAR Methods). We further

combined two adjacent SNVs into a unitary di-nucleotide polymorphism (DNP) mutation if they were in the same haplotype (Table S6, STARMethods). GG->TT or

CC->AA were the dominant DNP types (�50%) and were associated with smoking status.

(B) Schematic showing the approach used for determining the smoking score used in this study. Tumor purity estimates, counts of total mutations, and per-

centages that were smoking signature mutations and smoking-signature DNPs were used to derive a continuous smoking signature score.

(C) Shown are the pairwise cosine similarities of each pair of the substitution signature probabilities for the 53 environmental mutagen exposures reported in

Kucab et al. (Kucab et al., 2019).MX is a chlorine disinfection byproduct and a knownDNAmutagen suspected of increasing cancer risk when present at sufficient

levels in drinking water (McDonald and Komulainen, 2005). TheMX signature was highly co-correlated to smoking signatures and the PAHs, DBADE, DBA, and 5-

Methylchrysene. Benzidine, a chemical once heavily used in the dyeing industry and suspected to play a role in lung cancer (Tomioka et al., 2016), and PhIP,

present in cooked meat and linked to various cancers (Tang et al., 2007), were also highly co-correlated to these PAHs (> 0.5 and > 0.7, respectively).

(D) Boxplot showing significant difference (p = 2.2 3 10�16) in RNA-based stemness index (mRNASI) between tumors and NATs. See also table S1.

(E) Boxplot showing decrease of RNA-based stemness index (mRNASI) in both tumors and NATs with high smoking score (HSS) compared to corresponding

samples with low smoking score (LSS). Differences are significant in NATs and approach significance in tumors.Within both tumors and NATs, samples with HSS

showed higher mRNASI than samples with LSS (tumors: t test, p = 0.069; NATs: t test, p = 0.038), consistent with the known field cancerization effect of tobacco

exposure (Walser et al., 2008).

(F) Upper: Scatterplot showing direction and significance of pathway-level protein differences between samples with high and low smoking scores (HSS and LSS)

in tumors and NATs. Pathways are color-coded according to their pathway group in Figure 6B. Group 1 pathways are upregulated in HSS in tumors and

downregulated in HSS in NATs. Group 2 pathways are downregulated in HSS in tumors and upregulated in HSS in NATs. Groups 3 and 4 are upregulated and

downregulated, respectively, in both tumors and NATs. Signed -log10 FDR represents Benjamini-Hochberg corrected p-values from the one sided-Mann-

Whitney-Wilcoxon (MWW) test and the direction (+ or -) indicates activation or suppression (i.e., the MWW test side with lower p-value). Lower: HSS versus LSS

differential pathway scores in tumors and NATs at the transcriptome level. The group separations clearly defined by protein-based pathways (Figure 6B) are less

evident at the RNA level. Smoking and mutation status are inextricably interwoven, so it is likely that these smoking score-related differentials represent a

complex interplay between direct effects of combustion-related carcinogen exposure and effects mediated by mutational differences related to that exposure.
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Figure S7. Proteogenomic Differences between Tumors and Matched Adjacent Normal, Related to Figure 7
(A) PCA plots showing RNA, protein, phosphosite and acetylsite abundance in 110 tumor samples (triangles: cadet blue) and 101 NATs (circles: coral red).

(B) Schematic showing differentially regulated RNA, proteins, phosphosites and acetylsites between tumors and paired NATs (upregulated sites, FDR < 0.01, log2

FC > 1; downregulated sites, FDR < 0.01, log2 FC < -1). Most quantified proteins (76%) had differential expression between tumor and NAT (FDR < 0.01,Wilcoxon

signed rank test); among those with at least 2-fold differential expression, a slight majority (64%) were higher in NAT (Table S7).

(C) Gene-set enrichment analysis (GSEA) revealing pathways differentially expressed between tumor and paired NATs. Cell cycle progression, MYC Targets

Upregulation, Unfolded Protein Response, Glycolysis and TCA cycle (adjusted p < 0.001) were upregulated in tumor samples whereas KRAS Signaling (FDR <

0.001), STAT3 Signaling (FDR < 0.001), and Muscle Differentiation (FDR < 0.001) were downregulated in tumor samples compared to NATs.

(D) Using stringent cutoffs for quantitative difference, significance and consistency (log2 FC > 2, FDR < 0.01, and differential in R 90% of all Tumor-NAT pairs

(Pan-LUAD)), we identified 289 proteins upregulated at the protein level in tumors, 60 of which were supported by RNA and are shown in the figure (see also Table

S7). ‘‘HPA staining proportions’’ indicate the proportion of lung adenocarcinoma sections staining positive for the specific marker in the Human Proteome Atlas

database (https://www.proteinatlas.org/). This global tumor / NAT comparison revealed 18 enzymes, 3 transcription factors (TF), SOX4, TCF3, and HMGA1, 2

transporters, 23 secreted, and 21 transmembrane proteins as candidate biomarkers. GREM1, SOX4, SPINT1, ST14, SPINT2, CTHRC1, KDF1, MDK, SFN,

HMGA1, ESRP1, NME1, SERPINH1 and CBX8 are implicated in EMT and metastasis. Highly upregulated metabolic proteins included GFPT1, P4HB, PLOD2,

PYCR1, SHMT2, PSAT1, ERO1A, IL4I1, DHFR, and LDHA. Stress-related marker candidates with prognostic significance included ERO1A, DHFR, MANF,

HYOU1, LDHA, and CBX8. Remainder of figure: Proteomics-based tumor biomarker candidates (fold change > 4 and adjusted p value < 0.01 inR 80% of tumor /

NAT pairs) for 4 frequently mutated genes: TP53, EGFR, KRAS and STK11 (Table S7). Each dot in the boxplot represents a tumor sample. Blue-colored boxplots

highlight proteins with overexpression in more than 99% of tumor samples with the associated mutation. HPA proportions indicate the proportion of LUAD

sections staining positive for the specific marker in the Human Proteome Atlas. Relevant characteristics of the biomarker candidates and relevant targeted drugs

in clinical trials are shown in the accompanying plot. Condensed representations of these plots are shown in Figure 7C.

(E) Rank plots depicting differential phosphosite-driven signatures between tumor and paired NATs in tumors with mutations in STK11 or TP53. Residual

enrichment scores (y axis) were calculated between mutated tumors (STK11 or TP53) and all other tumors in order to highlight tumor / NAT differences in tumors

harboring the indicated mutation.
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