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A proteomic landscape of diffuse-type gastric
cancer
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The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with the worst prognosis

and few treatment options. Here we present a dataset from 84 DGC patients, composed of a

proteome of 11,340 gene products and mutation information of 274 cancer driver genes

covering paired tumor and nearby tissue. DGC can be classified into three subtypes (PX1–3)

based on the altered proteome alone. PX1 and PX2 exhibit dysregulation in the cell cycle and

PX2 features an additional EMT process; PX3 is enriched in immune response proteins, has

the worst survival, and is insensitive to chemotherapy. Data analysis revealed four major

vulnerabilities in DGC that may be targeted for treatment, and allowed the nomination of

potential immunotherapy targets for DGC patients, particularly for those in PX3. This dataset

provides a rich resource for information and knowledge mining toward altered signaling

pathways in DGC and demonstrates the benefit of proteomic analysis in cancer molecular

subtyping.
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Gastric cancer (GC) is the third leading cause of cancer
mortality in the world, particularly in East Asia, which
accounts for more than half of the cases worldwide1, 2. GC

is heterogeneous at the genetic and cellular levels3. The Lauren
classification stratifies GC into diffuse, intestinal, and mixed type
and such classification is widely used in the clinics4, 5. The
diffuse-type gastric cancer (DGC) accounts for approximately
30% of GC, and has poor clinical outcome with few targeted
treatment options6, 7. Previous study by The Cancer Genome
Atlas (TCGA) project mapped a genomic landscape of GC and
classified GC into four subtypes, namely Epstein–Barr virus
positive (EBV), microsatellite instable (MSI), genome stable (GS),
and chromosomal instability (CIN)8. DGC was classified mainly
as genomically stable tumors. A study from the Asian Cancer
Research Group (ACRG) clarified GC based on gene expression
data into four subtypes associated with distinct clinical outcomes:
MSI, MSS/EMT (microsatellite stable and epithelial-to-
mesenchymal transition), MSS/TP53+ (TP53 active), and MSS/
TP53− (TP53 inactive). The MSS/EMT subtype containing
mainly DGC showed the worst prognosis9. Similar studies iden-
tified GC driver genes and dysregulated pathways at genomic and
transcriptional levels, which have significantly enhanced our
understanding of gastric cancer10–13.

Realizing proteins as the “executioners of life” that determine
phenotype, the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) has published integrated analyses, including DNA
methylation, copy number alterations (CNVs), and mRNA and
protein profiling of TCGA tumor specimens to portray proteo-
genomic landscapes of colorectal cancer, breast, and ovarian
cancers14–16. The CPTAC work found that, in general, messenger
RNA (mRNA) transcript abundance does not reliably predict
protein abundance differences, and although CNV showed strong
cis- and trans-effects on mRNA abundance, relatively few of these
differences extend to the protein level14, 16. As a result, subtyping
of tumors from nuclear acid-based genomic data did not fully
agree with subtyping from proteomic data. Nevertheless, inte-
grated proteogenomic analyses afforded a new paradigm for
understanding cancer biology with functional context to interpret
genomic data.

Ideally, paired tumor and nearby/normal tissue from the same
patient should be compared to find genetic and proteomic
alterations. So far, published CPTAC studies analyzed tumor
samples from many patients, but profiled few normal tissues from
separate test subjects as normal controls. While this is not an
issue for genomic analysis, the heterogeneity introduced by var-
iation from different test subjects can further complicate pro-
teomics analyses and limit our ability to profile individually
altered cancer proteome, and identify dysregulated-signaling
pathways that can be tailored for individualized medicine.

Here, we present the first proteomic analysis of DGC by
measuring 84 pairs of tumors and their nearby tissues. Based on
proteomic results alone, DGCs can be classified into three sub-
types with distinct pathway enrichment and clinical outcomes.
Our study provides a rich resource for data mining and guidance
for clinical validation.

Results
Proteome profiling and targeted exome sequencing. We
examined 2451 GC cases deposited in the tumor tissue bank of
Beijing Cancer Hospital and selected 84 diffuse-type tumors (T)
together with their matching nearby tissues (N) that met our
criteria for proteome profiling and targeted exome sequencing
(Supplementary Fig. 1; Supplementary Data 1). We employed a
fast mass spectrometry (MS) workflow for proteome profiling
(fast-seq)17. Extracted proteins from frozen tissues were digested

with trypsin and the resulting peptides were separated at high pH
with small columns packed in pipette tips (sRP); fractionated
peptides were pooled to 6 MS runs using a 75 min high-
performance liquid chromatography gradient at low pH. Such a
workflow allowed the analysis of a proteome in half a day
(Supplementary Fig. 1c). The MS platform was stable and
repeatable as judged by quality control runs during the entire
data-collecting period (Supplementary Fig. 2a). A total of
168 samples (84 tumors and 84 nearby tissues) were measured
and the results showed good consistency in proteome identifi-
cation and quantification (Supplementary Fig. 2b). We analyzed
the 1008 (168 × 6) raw files together for uniformed quality control
and protein identification with 1% global protein false discovery
rate (FDR), which resulted in the identification of 11,340 gene
products (GPs) (Supplementary Fig. 2c-e). To further increase
reliability, we selected 9186 GPs that were detected with at least 2
unique peptides with 1% FDR at the peptide level and with
Mascot ion score greater than 20 for subsequent analysis (Fig. 1a,
b; Supplementary Data 2). We picked common proteins that were
detected in at least one-sixth of the samples (28 cases), resulting
in 5439 GPs for molecular subtyping. Proteome quantification
was performed as previously reported with the iBAQ algorithm18

followed by normalization to fraction of total (FOT). We then
considered the fact that quantification was more reliable for
abundant proteins. The coefficients of variation (CVs) and
interquartile range (IQR) of proteins with the FOT over 10−5

were drastically decreased, suggesting that FOT> 10−5 is a good
cut-off for accurate quantification (Supplementary Fig. 3a and
3b). Applying this cut-off value, we used the remaining 3619 GPs
for principle component analysis (PCA) analysis (Supplementary
Fig. 3c). Finally, we selected the 2538 GPs that were differentially
expressed over threefold between T and N in at least 10% of the
cases and submitted them for clustering and subtyping
classification.

Our data showed that the number of GPs identified in the DGC
proteome increased steadily until 25 pairs of samples, and
approached a plateau between 50 and 84 pairs of samples,
suggesting that 84 pairs of samples was sufficient to obtain a
detailed DGC proteomic landscape (Fig. 1b). As shown in Fig. 1c,
a large number of proteins were annotated as extracellular matrix
or in extracellular space, suggesting that our DGC proteome
dataset includes the tumor microenvironment.

To obtain genetic background of the samples, we carried out
targeted exome sequencing with a panel of 274 cancer driver and
GC “hotspot” genes8, 10, 19 The sequencing resulted in a mean
coverage of 234-fold. A total of 7197 somatic variants of 183
genes were detected with mutations in at least one case, and 39
genes were detected with mutations in 5% or more patients
(Supplementary Fig. 1d; Supplementary Data 2). TP53, CDH1,
KMT2D, RHOA, ARID1A, APC, and PIK3CA were detected as
high-frequency mutations (10–46%) (Fig. 1d and Supplementary
Fig. 5a), consistent with previous reports8. Notably, mutations in
the development pathways such as WNT (APC and CTNNB1)
and NOTCH (NOTCH1 and NOTCH2) were detected with
higher frequencies at 16 and 11%, respectively (Supplementary
Data 2).

General features and altered pathways in the DGC proteome.
Among the 9186 GPs in the DGC proteome, 7443 GPs were
found in both tumors and nearby tissues; 1482 GPs and 261 GPs
were detected only in tumors or nearby tissues, respectively
(Supplementary Fig. 3d). PCA demonstrated a clear distinction
between the proteomes of tumors and nearby tissues, revealing an
altered proteomic landscape of DGC (Supplementary Fig. 3c). A
SAM (significance analysis of microarray) analysis identified 1637
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proteins as differentially expressed between T and N with sta-
tistical significance (FDR q-value< 0.01 by SAM and differential
expression ratio >0.5 or <−0.5), including 1184 up-regulated and
453 down-regulated GPs (Supplementary Fig. 3e; Supplementary
Data 3). Gene Ontology annotation indicated that the tumor
proteome was significantly enriched in epithelial mesenchymal
transition (EMT), cell cycle, DNA replication, checkpoint, E2F,
p53 signaling, and inflammatory response pathways, whereas the
nearby tissue proteome was enriched in metabolism pathways,
such as fatty acid metabolism, oxidative phosphorylation, and
amino acid metabolism (Fig. 2a). Notably, many gastric markers
(ANXA10, VSIG1, CLDN18, CTSE, TFF2, MUC5AC and MUC6)
and signature proteins for stomach functions, including digestion,
absorption, secretion, and stomach acid generation such as PGC,
GIF, GAST, and ATP4A, were lost in tumors (Fig. 2b). Indeed,
stomach-specific proteins annotated in the Human Protein

Atlas20 were significantly down-regulated compared to proteins
that were not stomach specific (Fig. 2c), revealing that loss of
stomach tissue identity is an important overall feature of DGC.

We then set stricter conditions as the following to define up/
down-regulated proteins to seek for commonality of DGC: (1) T/
N ratio >3 or <1/3; (2) observed in >75% of the patients; (3) up/
down-regulated in >60% of the detected cases. As a result, 490
GPs were identified as differentially expressed proteins in DGC,
with 272 up-regulated and 218 down-regulated. Proteins involved
in cell cycle regulation (CDK1, HAT1, DNMT1), DNA replica-
tion (MCM2-7 helicase, RRM1-2), the condensin complex
(SMC2/4, NCAPD2, NCAPG), and metabolism (NNMT,
MAGED2), were up-regulated in the tumors (Fig. 2d). Signifi-
cantly, many proteins from extracellular matrix were detected as
differentially expressed between T and N, suggesting that the
tumor microenvironment was a significant component in the
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Fig. 1 A summary of proteomic and genomic analysis of diffuse-type gastric cancer. a Proteomic datasets filtered at different levels for various statistical
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≥2 unique peptides with ion score >20 and peptide FDR <1% that were used for identifying differentially expressed proteins (DEPs) between tumors and
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identified as a function of patient numbers. c Subcellular distribution of DGC proteins annotated with Gene Ontology. d Targeted exome sequencing was
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altered DGC proteome. Cancer driver pathways, including
transforming growth factor (TGF), WNT, NOTCH and inter-
feron (IFN), were up-regulated in DGC with prominent increase
in proteins at ligand and receptor levels (Fig. 2e), suggesting the
dysregulation of these important cancer driver pathways from the
most up-stream in DGC. Notably, while WNT and NOTCH

pathways were detected with genomics, TGF and IFN pathways
were only detected with proteomics.

DGC proteomics subtypes and overall survival. We employed
consensus clustering21 to identify DGC subtypes based on dif-
ferentially expressed proteins (D6, Supplementary Data 2). Three
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clusters (PX1–3) were evident (Supplementary Fig. 4; Supple-
mentary Data 1): PX1 contained the fewest number of differen-
tially expressed proteins, which were enriched in the cell cycle-
related processes (Fig. 3a, b and Supplementary Fig. 4f); PX2 was
enriched in not only cell cycle proteins, but also those involved in
the EMT process; PX3 was characterized with the enrichment of
proteins in the immunological process. Thus, DGC could be
subtyped as cell cycle (PX1), EMT (PX2), and immunological
process enrichment subtype (PX3) based on their altered pro-
teome patterns alone (Fig. 3c; Supplementary Data 4).

As only one patient of stage I and II met the endpoint (death of
cancer), we investigated the overall survival (OS) of 57 patients
with clinical stage III or IV with a median follow-up time of 27.2
(8–50) months. The PX1 subtype had the best OS, while PX3 had
the worst (log-rank P = 0.038, P trend = 0.014, Fig. 3d). Survival
analysis of all 82 patients showed similar trend regardless of the
TNM (tumor, node, metastasis) stages (Supplementary Fig. 4e).
Remarkably, cancer subtyping was associated with clinical
outcome based solely on the altered cancer proteome, irrespective
of genetic background. Furthermore, proteomics subtyping could
also serve as an independent predictive factor (Cox P trend =
0.006, hazard ratio (HR) = 2.757) in the multivariable analysis
after adjusting for clinical stage and other covariates (Table 1 and
Supplementary Table 1). We found no statistically significant
prognosis improvement by chemotherapy for the PX3 group (log-
rank P = 0.831, Fig. 3d); majority of the PX1 and PX2 patients
received adjuvant chemotherapy, preventing a sound statistical
assessment of the chemotherapy response.

Correlation of tumor proteomes with DNA mutations. To
investigate the correlation between genome and proteome, we
first investigated DNA mutations of driver genes with proteome
alteration patterns. Among the three subtypes, PX1 has the fewest
number of DNA mutations, while PX3 has the most number of
mutations (Fig. 4a and Supplementary Fig. 5b). DNA mutations
in PX3 showed enrichment in several pathways, including the
CXCR4, PI3K-AKT, and focal adhesion pathways (Fig. 4a; Sup-
plementary Data 5). Next, we examined the connection between
gene mutation and alteration in protein abundance. Of the 183
mutated genes, only 9 gene products exhibited altered protein
expressions compared with the wild type when all nonsynon-
ymous mutations were taken into consideration; of the 87
mutated genes with truncating mutation, only 4 genes (RBMX,
ARID1A, SOX9, and TMPO) exhibited significantly lower protein
expression when considering only truncating mutations (Sup-
plementary Fig. 5c and 5d; Supplementary Data 5), suggesting
that very few mutations strongly impact protein expression. Of
the 9 genes that did show altered protein expressions, mutant
tumor suppressor gene (TSG) products (ARID1A, ATM, BAX,
PLEKHA6, SOX9) exhibited reduced expression, whereas the
oncogene product (MED12) exhibited increased expression, as
expected. One exception is the tumor suppressor NF1, whose
mutation was correlated with higher protein abundance.

A considerable number of driver genes (>13%, 25/183), such as
AR, MYC, PPARA, and FBXW7, were detected with DNA
mutations but their proteins were not detected in tumors or

nearby tissues (Supplementary Fig. 5e, Supplementary Data 2).
Notably, 13% (24/183) of the mutated genes, including KRAS,
NRAS, CDH1, ATM, and PTEN, were detected only in nearby
tissues but not in tumors (Fig. 4b). The latter examples excluded
the trivial explanation that the mutant proteins were not
amenable for detection with MS. As the DGC proteome covered
more than 9000 gene products in our study, the undetected
proteins with detectable DNA mutations were probably among
the extremely low abundant proteins that are either below the
detection limit of the current method or not expressed at all in the
tumor. While loss of TSG proteins in tumors was expected, failure
in detection of oncoproteins in tumors raised a serious concern
about using DNA sequencing alone to “predict” protein
expression and highlighted the absolute necessity of measuring
proteins directly for precision medicine.

We also noted that up- and down-regulation of oncogene and
TSG were not always consistent with their predicted roles in
carcinogenesis among the well-annotated 138 cancer driver
genes19 (Fig. 4c). For example, TSG products RB1 and NF1 were
often increased, while the oncogene products KRAS and
CTNNB1 were decreased in tumors. These observations were
consistent with the immunohistochemistry (IHC) results in the
Human Protein Atlas20. We suspect that compensation could be
one contributing factor to account for such a behavior, in which
some TSG pathways are hyper-activated and oncogene pathways
are tuned down to maintain tumor homeostasis.

Next we investigated how a single gene mutation correlates
with the alteration of the cancer proteome, namely alterations of
other proteins and pathways. For genes with DNA mutation
frequency greater than 10% (TP53, CDH1, KMT2D, ARID1A,
FAT4, RHOA, SPTA1, APC, and PIK3CA), we mined the data
using Wilcoxon rank-sum test and found significantly altered
proteins between samples with and without the mutation
(Supplementary Data 5). In total, the 9 most frequently mutated
genes were significantly correlated with the alteration of
expressions of 3958 proteins in tumors, ranging from 126 in
the CDH1 mutants to 880 proteins in the PIK3CA mutants
(Supplementary Fig. 5f and Supplementary Data 5).

We chose CDH1 mutations as an example to elucidate how
gene mutations were associated with cancer pathway alterations.
In total, 21 and 62 samples were found with or without CDH1
mutations, respectively. The Wilcox test identified 87 up-
regulated and 39 down-regulated proteins associated with
CDH1 mutations (Supplementary Data 5). Among them, proteins
in the canonical cancer driver pathways, including WNT5A,
epidermal growth factor receptor (EGFR), and AKT2, were up-
regulated in tumors with CDH1 mutations, while the WNT
inhibitor, LRP10, was down-regulated, suggesting that up-
regulations of WNT, EGFR, and AKT pathways are operational
in CDH1-mutated tumors (Fig. 4d). Similarly, tumor suppressor
proteins involved in adhesion, including EPHB3 and IGSF8,
which were reported to suppress cancer metastasis and TGF-β
signaling22, 23, respectively, were significantly down-regulated,
suggesting that EPHB3 and IGSF8 may function downstream of
CDH1 to mediate cell–cell adhesion. Interestingly, FOCAD, a
protein involved in focal adhesion, was also up-regulated in the

Fig. 2 Proteomic features of the diffuse-type gastric cancer. a Top ranked pathways that are significantly altered in tumors as compared with nearby
tissues. b Significantly decreased gastric function proteins and gastric mucosa signature proteins in tumors and nearby tissues. The y-axis represents log10
(FOT) +5. *P< 0.05, **P< 0.01, *** P< 0.001 (Wilcoxon rank-sum test), ΔInsufficient sample size. c Box plots of log10 transformed T/N ratios of stomach-
specific and not stomach-specific proteins; whiskers show the 1.5-fold IQR, P-value was calculated by Wilcoxon rank-sum test. d Common proteins up-
regulated in majority of tumors that were classified in the four functional categories. (% in parenthesis denotes percentage of tumor samples that exhibit
>3-fold change in 84 patients). e Altered proteins in the WNT, NOTCH, TGF, and INF pathways. Differentially expressed proteins in tumors (T/N >3) were
boxed with red color. The number in parenthesis is the percentage of samples with overexpression when the protein was detected
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mutants, suggesting a possible compensation mechanism when
cell–cell adhesion was compromised with loss of CDH1 function.
This analysis provided new protein candidates to investigate the
CDH1-mediated pathways. The up-regulated protein ASPN has
been reported to reside in the tumor stroma and promote co-
invasion of cancer-associated fibroblasts and cancer cells24. This
clue indicates that CDH1 mutation influences not only the tumor
cells, but also the tumor microenvironment. Thus, the CDH1
mutations appeared to be associated with three cancer-related
processes—the canonical cancer driver pathway, cell–cell adhe-
sion, and the tumor microenvironment (Fig. 4d and Supplemen-
tary Data 5).

For the 9 genes with higher mutation frequency, we calculated
the Jaccard index between any two altered proteomes caused by
the mutations to evaluate how similar they were (Supplementary
Data 5). Only APC and PIK3CA mutations had weak similarity in
the altered proteome (Supplementary Fig. 5g) suggesting their
coordinated regulation, which has been show previously in
colorectal cancer25.

Nomination of druggable candidates for DGC. We first eval-
uated the 159 druggable proteins elected previously through
comprehensive analysis of genomic data of different cancers,
which we referred to as “genomic targets”26–28 (Supplementary
Data 6). Our proteomic analysis had confidently identified 103 of
them (detected in more than 5 patients). Here, we limit the
druggable targets to those that are over-activated (or over-
expressed) in tumors. In our dataset, 18 of them met this con-
dition and, among them, growth regulators such as PDGFR,
PI3KCA, AKT3, and EPHB2, as well as cell cycle regulators,
including CDK4, ATR and AURKA, could be potential drug
targets. When we used Cox regression analysis to identify prog-
nosis unfavorable therapeutic targets whose higher protein
expression levels are associated with worse OS, none of the above
genomic targets could pass the test; instead, two candidates,
EPHB2 and TP53, were associated with better OS when

overexpressed (Fig. 5a and Supplementary Fig. 6a; Supplementary
Data 6).

We then sought to nominate drug target candidates based on
proteomics data. We applied the following criteria in the
selection: (1) they have to be differentially overexpressed in more
than 50% of the tumors; (2) they belong to functional categories
that are conventionally considered as druggable, namely enzymes,
GPCR (G protein coupled-receptor), kinases, ion channels,
transmembrane and other membrane proteins, and extracellular
membrane proteins, against which neutralizing antibodies could
be developed; (3) their overexpression is correlated with poor
survival (Cox regression, log-rank test P-value< 0.05, HR> 1).
We identified 23 potential proteomic drug candidates that met all
these conditions (Fig. 5b, c; Supplementary Data 6).

These 23 proteomic drug candidates, which reside in tumor
cells, extracellular matrix, or immune cells, suggest that four
categories of DGC vulnerability may be exploited (Fig. 5d): (1)
the canonical cancer growth pathway—JAG1 and IGFBP3 that
are components of the NOTCH and insulin-like growth factor
(IGF) pathways, (2) metabolism and oxidative stress—GZMK,
CYBA, SLC1A5, SLC16A3, PGM2L1, and SCD, which indicate
the dysfunction in reactive oxygen species (ROS), oxidative stress,
and metabolic pathways for glutamine, lactate, and unsaturated
fatty acid, (3) cell adhesion and invasion—PLSCR1, CLDN1,
MMP8, ITGB2, and GPRC5B, and (4) immune-modulation in
tumors and tumor microenvironment—IDO1, PTGS2, CD55,
CD97, HLA-DQA1, SPN, CD300A, EMR2, SIPRA, and
UNC93B1, which are present in different immune cell types,
including antigen-presenting cells (APCs), T cells, natural killer
cells (NK cells), and macrophages.

The first vulnerability of DGC is the canonical cancer growth
pathways, including NOTCH and IGF pathways. JAG1 is the
ligand in the canonical Notch pathway in tumor growth through
maintaining cancer stem cell populations, promoting cell survival,
inhibiting apoptosis, and driving cell proliferation and metas-
tasis29. IGFBP3, which is a key regulatory molecule in the IGF
axis and could be either tumor suppressor or promoter in

Table 1 Univariate and multivariate analysis of overall survival in 82 patients

Variable (n) Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Agea 1.037 (1.001–1.076) 0.045 1.033 (0.994–1.074) 0.102
Gender
Male (51) 1.0
Female (31) 1.122 (0.478–2.638) 0.791
Adjuvant chemotherapy
Without (21) 1.0 1.0
Withb (61) 0.330 (0.138–0.788) 0.009 0.834 (0.282–2.466) 0.742
Tumor site
Cardia, GEJ (20) 1.0
Body (33) 1.405 (0.439–4.501) 0.567
Antrum (29) 1.497 (0.450–4.986) 0.511
Clinical stagea

(Ib to IV) 7.065 (2.661–18.760) <0.001 17.91 (3.529–90.91) <0.001
TP53 mutation
Wild type (45) 1.0
Mutant (37) 1.407 (0.608–3.260) 0.423
Profiling cluster
PX1 (17) 1.0 1.0
PX2 (32) 2.186 (0.453–10.560) 0.330 4.280 (0.731–25.052) 0.107
PX3 (34) 4.221 (0.950–18.760) 0.058 9.785 (1.597–59.935) 0.014
P trend 2.009 (1.070–3.772) 0.025 2.757 (1.329–5.722) 0.006

GEJ, gastroesophageal junction; HR, hazard ratio; CI, confidence interval
aContinuous variable
bPatients proceed through at least one cycle of adjuvant chemotherapy. Significant data are emphasized in bold
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different tumor types, was reported to be highly expressed in
aggressive breast cancer, advanced stage of melanoma, and higher
in metastatic than non-metastatic tumors in pancreatic endocrine
neoplasms30.

The second vulnerability is the metabolism and oxidative
stress. One of the hallmarks in the advancement of cancer cells is
their ability to overcome and acquire resistance to adverse growth

conditions, including ROS and aberrant metabolism. CYBA (also
known as p22phox) binds to and stimulates NADPH oxidase
(NOX) to produce excessive amounts of ROS, which can cause
oxidative damage to lipids, proteins, and DNA, making the
cellular environment unfavorable for normal cells to grow but
adaptable for tumor cells to survive31. Outside of the cancer cell,
the overexpressed GZMK (Granzyme K) in the extracellular
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matrix could induce rapid ROS generation and the collapse of the
mitochondrial inner membrane potential to provide double
jeopardy by oxidative stress32. Overexpression of SLC1A5
(ASCT2), SLC16A3 (MCT4), PGM2L1, and SCD suggests that
DGCs have modified their metabolic pathways for glutamine33,
lactate34, and unsaturated fatty acid35.

The third vulnerability is the cell adhesion and invasion.
PLSCR1, a transmembrane lipid transporter, is involved in rapid
Ca2+-dependent trans-bilayer redistribution of plasma membrane
phospholipids and is highly expressed in many tumor tissues36.
MMP8, ITGB2, and CLDN1 are well-studied proteins that have
evolved with tumor cell’s higher ability for invasion. In a clinical
trial, an antibody against CLDN18.2, when added to standard
chemotherapy, resulted in a 53% reduced risk for progression and
a 49% reduced risk of death for advanced gastric cancer patients
(FAST, NCT01630083, Germany)37. Our results suggest that a
therapy targeting tight junction for DGC could be expanded to
CLDN1.

The fourth vulnerability is the immune-modulation in the
tumor microenvironment. IDO1 has been reported to be
overexpressed in many tumors, in either the tumor cells
themselves or tumor-associated cells such as dendritic cells
(DCs), macrophages, and endothelial cells. Overexpression of
IDO1 increased the accumulation of kynurenine (Kyn), a
metabolite that inhibits T-cell function and biased DCs and
macrophages toward an immunosuppressive phenotype38.
Another enzyme that plays a vital role in immune suppression
is PTGS2 (COX-2), which produces the arachidonic acid
prostaglandin E2 (PGE2) that selectively suppresses effector
functions of several immune cells and also alters cytokine
expression profiles of DCs to suppress antitumor cytotoxic
T cells39, 40. Other candidates, including CD55, CD97, HLA-
DQA1, and CD300A, are distributed in many types of immune
cells (APC, T cell, NK cell, and so on.) and correlated with poor
prognosis of a variety of cancers41–44. A list of drug candidates
similarly identified that were subtypes specific (PX1, 2 and
3 specific) can be found in Supplementary Fig. 6b.

The protein landscape of cancer immunotherapy in DGC.
Recent cancer immunotherapy has revolutionized the treatment
of cancers. The PX3 subtype has the worst prognosis and is
resistant to chemotherapy. The enrichment of immune-related
proteins raised the hope for cancer immunotherapy as a treat-
ment option.

Surface receptors of immune cells mediate intracellular and
cell–cell communications to active effector cells to kill tumor cells.
This process can be hijacked and diverted by tumor cells to evade
immune killing. We first surveyed the expressions of
receptor–ligand pairs that are involved in forming the immune
synapses, as described in published reviews45, 46. Ten pairs of
receptor–ligands were identified in the DGC proteome and 9 of
them were overexpressed (T/N > 3-fold) in tumors, ranging from
1.2% to 34.5 % of the samples (Fig. 6a), indicating the presence of
considerable number of immune cells in the DGC samples.
Majority of the receptor–ligands that were detected likely

originate from the APC side, while only one receptor (CD27) is
from the T-cell side in the APC–T-cell immune synapses.

We next examined protein expression of drug targets that are
currently being developed for cancer immunotherapy47. We
detected 19 targets that were expressed at different levels (Fig. 6b).
PD-L1 (CD274) was only detected in two patients and expression
levels were extremely low. Notably, expressions of TMEM173
(STING), ARG1, NT5E, CD40, IDO1, SIRPA, CD276, and
FCGR1A were high in tumors and were highly enriched in the
PX3 group. An overview of potential immunotherapy targets and
related proteins can be found in Supplementary Fig. 6c45–47.

IDO1 and ARG1 are two immune suppressive mediators with
inhibitory agents in clinical trials. We performed IHC of IDO1 on
selected patients’ samples that displayed differential IDO1
expression by proteomic analysis. The high IHC scoring was
consistent with the high protein abundance measured with mass
spectrometry (FOT) and western blot (Fig. 6c). We defined
samples as IDO1 high or ARG1 high if the abundance of these
proteins is in the upper quartile (75th percentile) of all samples.
IDO1-high, ARG1-high, and particularly both high cases were
significantly enriched in the PX3 group, while other parameters
that may have predictive values for responders of immunother-
apy, such as mutation numbers (MSI-high), EBV infection, and
intratumoral tumor-infiltration lymphocytes (IT-TILs), failed to
stratify patients into the three subtypes (Fig. 6c). We did IHC of
T-cell marker CD8+ and hematoxylin and eosin (H&E) staining
to calculate the percentage of IT-TILs. The IT-TIL values showed
no difference among the three groups, but the CD8+ T cell-high
patients were 2/16, 5/34, and 11/34 in PX1, PX2, and PX3,
respectively, confirming a heightened cellular immune response
in the PX3 group (Fig. 6c, d and Supplementary Fig. 6d). Taken
together, these data verified that the PX3 group has a more active
immune response and could be the prime candidate for cancer
immunotherapy.

Discussion
We presented a proteomic landscape of DGC with 84 pairs of
tumors and matching nearby tissues. This work is a logical
extension of the TCGA-affiliated CPTAC project, which has
carried out proteogenomic analyses of colorectal, breast, and
ovarian tumors with extensive genome, transcriptome, and pro-
teome profiling but without information from the matching
nearby tissues14–16. Our work provides a direct comparison of
these information, presenting a panoramic view of the altered
cancer proteome and allows the analysis and extraction of altered
signaling pathways in DGC at the proteome level. An indepen-
dent cohort would be required to validate the clinical relevance
and subtypes we observed.

Molecular subtyping of cancers, aimed to stratify patients into
subtypes associated with clinical outcomes, therapy responses,
and biological characteristics, has been a long sought-after goal of
mapping the genetic landscape of cancer. DGC is mainly classi-
fied as the genome stable subtype in TCGA and accounts for the
majority of the MSS/EMT subtype in ACRG with the worst
prognosis8, 9. Our proteomic analysis has further separated DGC

Fig. 4 Correlation of genomic mutations and protein expressions. a Differentially mutated genes and their pathways in PX1–3, *P< 0.05, **P< 0.01
(Fisher’s exact test). b Protein expression status of selected mutated genes. c Differential protein expression of mutated genes in the major cancer driver
pathways. The left panel summarizes the correlation of altered protein expression and gene mutations of selected proteins in major oncogenic and tumor
suppressive pathways; numbers in parenthesis represent number of patients that differential protein expression were detected, number of mutations
detected, and number of cases where both were detected, respectively. Right panel shows differential protein expression and gene mutations in each
patient. Large dots depict changes in protein expression, and small dots depict a variety of gene mutations. d Altered expression of tumor proteins
associated with CDH1 mutations. Boxplots show protein expression levels of CDH1-mutated and CDH1-wild-type patients (*P< 0.05; **P< 0.01; ***P<
0.001, Wilcoxon rank-sum test). Whiskers show the 1.5-fold IQR
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Fig. 5 Nominating potential druggable proteins for DGC. a The association between protein expression (T/N ratio) and overall survival of genomic data
discovered drug targets. The ln (Hazard ratio) (x-axis) and log10(P-value) (y-axis) were calculated from Cox proportional hazards regression analysis. Ln
(Hazard ratio) >4 or <−4 were plotted with 4 or −4. Large dots depict proteins overexpressed in tumors, and small dots depict proteins that are not
overexpressed in tumors. b The association between protein expression (T/N ratio) and overall survival of proteomic data discovered drug targets. A list of
23 proteins overexpressed in tumors with log-rank P-value< 0.05 and ln (hazard ratio) >0 is included in the box on the right. c The association between
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into three subtypes, revealing the heterogeneity and diversity of
DGC at the proteome level. The proteomic subtypes feature
distinctively altered signaling pathways and clinical outcomes.
Our analyses indicate that the PX3 subtype may not benefit from
chemotherapy, but could be the prime target for immunotherapy.

How to translate proteomic subtyping into clinical application
will be an important research direction in the future.

Notably, while a considerable number of genes were identified
with DNA mutations, their gene products were never detected in
the DGC proteome, and several oncogene products were not
detected in the tumors but were detected in the nearby tissues.
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Similar observations have also been made in the previous CPTAC
studies, as many amplified genes were not transcribed into
mRNA or translated into proteins14. It appears that DNA
mutations can be viewed as historical records of what has hap-
pened during the evolution of the tumor, some of which may no
longer be functioning at the time of surgical resection, whereas
protein analysis portrays the current states of the tumor. Our
observations, especially the loss of activating oncogene products
in tumor samples, add a cautionary note on nominating treat-
ment candidates based solely on DNA mutations and further
strengthen the necessity of measuring proteins in precision
medicine. As our ability to measure proteins continues to
improve, it could be expected that protein measurements would
become an integral component for precision medicine.

The targeted DNA exome sequencing revealed a poor corre-
lation between genomic and proteomic data, as has been
demonstrated in the CPTAC projects14, 16, using more extensive
analyses of the genome and transcriptome. The discordance of
gene mutation and protein abundance could be explained by (1)
tumor heterogeneity, in which DNA mutations in a small number
of tumor cells were detected, while their alteration in protein
abundance is masked by neighboring cells that were abundant
and genetically wild type; (2) limited number of samples with
DNA mutations, which diminishes the power of statistical ana-
lysis to calculate the correlation. For higher frequency mutations,
such as CDH1, ARID1A, and RHOA, proteome alteration infor-
mation can indeed be extracted. For example, the correlation of
CDH1 mutations to the activation of WNT, EGFR, and AKT
pathways as well as the inactivation of tumor suppressors, such as
EPHB3 and IGSF8, provides several hypotheses to test.

Analyzing proteomes of both tumor and the nearby tissue from
the same patient also allowed us to more reliably nominate
potential drug targets. We suggest that nominating drug targets
based on their overexpression in tumor and druggability is not
always adequate. For instance, we found that, while many pro-
teins belong to the druggable categories, including several “star”
molecules including PDGFRB, CDK4, and PI3KCA derived from
cancer driver gene analyses, their elevated expressions are not
correlated with poor survival. In fact, almost all druggable pro-
teins derived from the cancer driver genes do not exhibit positive
correlations between high expression and poor prognosis, making
their targeted inhibition a questionable treatment strategy. We
propose to consider the correlation between overexpression and
OS in addition to differential expression in the tumor when
nominating drug target/candidates for treatment and developing
drugs. It will be interesting to investigate in the future the 4
vulnerabilities and the 23 potential drug candidates that we
nominated for DGC.

Our analyses of tumors with their microenvironments also
painted an immune protein landscape in DGC. Tumor-
infiltrating immune cells, for example, CD8+/CD3 T cells, are

associated with good prognosis in ovarian, colon, breast cancer,
and other solid tumor types48, 49. However, this does not seem to
be the case in gastric cancer. It was reported by Thompson et al.50

that an increased CD8 infiltration is correlated with impaired
progression-free survival and OS in gastric cancer and gastro-
esophageal junction cancers, and patients with higher CD8+ T-
cell densities also have higher PD-L1 expression. The reason for
such difference is not clear, but it may indicate an adaptive
immune resistance mechanism. Compared with an overall
response rate (ORR) of 55% in non-small-cell lung cancer
(clinical trial KEYNOTE-021)51, an anti-PD-L1 therapy only
received an ORR of 11.2% in GC (clinical trial KEYNOTE-059)52.
Considering the low and infrequent expression of PD-L1
(CD274) in this study, several other immune checkpoint block-
ers, especially the ones identified in the PX3 group, deserve fur-
ther detailed investigation and development as potential targets
for DGC.

In summary, our study provides a rich resource for deter-
mining the major pathway alterations in DGC, and demonstrates
the advantage of understanding cancer in the context of tumor
microenvironment at the proteome level. How to translate these
data and information into clinical practice and care will be the
future direction for cancer research.

Methods
Biospecimen collection and pathology and clinical data. We screened 2451
gastric cancer patients who took total or subtotal gastrectomy at Beijing Cancer
Hospital, Beijing, China (from December 2012 to July 2015), and selected 146 cases
of DGC. Among the excluded 2305 patients, 428 were treated with neoadjuvant
chemotherapy or chemo-radiation therapy before operation, 92 were diagnosed
with gastrointestinal stromal tumors, 751 were intestinal-type gastric cancer, 644
were mixed-type gastric cancer, and 390 did not have enough tumor tissues or
nearby gastric tissues. All cases were staged according to the seventh edition of
American Joint Committee on Cancer (AJCC) staging system. Each specimen was
collected within 30 min after operation, cleaned with sterile towel, immediately
transferred into sterile freezing vials and immersed in liquid nitrogen, then stored
at −80 °C until use. The protocol was approved by Beijing Cancer Hospital Medical
Research Ethics Committee (2015KT70). We collected written informed consent
from all participating patients.

Tumors and their nearby tissues were evaluated by pathologists. Nearby tissues
were designated as non-cancerous and were greater than 5 cm away from the
surgery margin. Each specimen was cut into four pieces under −40 °C. One was
formalin fixed and paraffin embedded for pathology examination; one was used for
protein profiling, one was used for DNA sequencing, and one was stored for future
use. H&E-stained sections were examined by two expert gastrointestinal
pathologists (Z.L. and Yumei Lai) independently to confirm: (1) diffuse type
(Lauren type); (2) >50% tumor cell nuclei; (3) <20% necrosis in tumor tissue; (4)
no tumor cells in nearby tissue (Supplementary Data 1). Mesenchymal percentage,
normal cell percentage, signet ring cell proportion, lymphovascular invasion, and
nearby tissue status (superficial gastritis, atrophic gastritis, intestinal metaplasia or
dysplasia) were also determined. Among the 146 pairs of DGC samples, 56 did not
pass the criteria due to less than 50% of tumor cells in tumor tissue, 3 failed because
nearby tissue contained tumor cells, and 1 failed because of muscle layer tissue in
nearby tissue. An additional two patients were excluded because gastric cancer was
diagnosed as second primary tumor after lung cancer. Specimens in dry ice were
transferred to Beijing Proteome Research Center within 3 h after surgery. The
remaining 84 diffuse type were processed for proteome profiling, and 83 were

Fig. 6 The protein landscape of cancer immunotherapy in DGC. a Multiple receptor–ligand pairs found in antigen-presenting cells (APCs) and T cells
(figure adapted from ref.45 and ref.46). Shade of the each of the three blocks represents the percentage of patients with the protein overexpressed in PX1–3,
respectively, and the number above the block denotes the total percentage of all patients with the protein overexpressed. b Expressions of 19
immunotherapy targets in clinical development. The y-axis of the box plots at the bottom represents log10 (FOT ×105) of each protein; the number in
parenthesis in the x-axis represents number of patients with FOT >10−5. T1–3 tumor tissues of PX1–3; N1–3 nearby tissues of PX1–3. The box plots show the
median, 25th and 75th percentile values (horizontal bar, bottom and top bounds of the box), and whiskers show the 1.5-fold IQR. c Comparison of various
parameters among three clusters. Patients in PX1 (blue), PX2 (orange), and PX3 (red) are ordered by mutation numbers. *P< 0.05, **P< 0.01, *** P<
0.001 (Chi-square test), IDO immunohistochemistry staining of representative examples (bottom, shown at ×100 magnifications, scale bar: 100 μm), their
IHC scores, the corresponding FOT ×105 values obtained from protein profiling, and IDO1 protein expression measured by western blot are shown. IT-TILs
intratumoral tumor-infiltrating lymphocytes, CD8+T-high CD8-positive T-cell number ≥298 per μm2 (see Supplementary Figure 6d for details), MSI-H
microsatellite instability high, EBV Epstein–Barr virus status; IDO1/ARG1-high ≥upper quartile of all detected values. d H&E and CD8 IHC staining in
representative examples in PX1–3, shown at ×100 magnification (scale bar: 200 μm)*P< 0.05, **P< 0.01, *** P< 0.001 (Chi-square test),
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processed for targeted sequencing, except for one patient due to low DNA quality.
All except 2 patients (GC055 and GC096) received follow-up every 6 months from
the date of surgery.

Demographics, histopathologic information, family history of cancer, primary
tumor location, first recurrent site, treatment details including chemotherapy
drugs, doses and routes of administration, and outcome parameters were collected.
The date of operation was used as a surrogate for the date of initial diagnosis. OS
was defined as the interval between the date of initial surgical resection to the date
of last known contact or death. Disease-free survival was defined as the interval
between the date of initial surgical resection to the date of progression or to the last
follow-up date. The date of progression was defined as the date of documented
recurrences by imaging evidence (computed tomography, magnetic resonance
imaging, or positron emission tomography). With or without chemotherapy in this
research was defined as with or without at least one cycle of adjuvant
chemotherapy.

Immunohistochemistry staining and evaluation. IHC for MLH1, PMS2, MSH2,
and MSH6 was performed as previously described53 to determine microsatellite
stability status. Monoclonal antibodies used were as follows: MLH1 (Clone ES05,
DAKO), PMS2 (Clone EP51, DAKO), MSH2 (Clone FE11, DAKO), and MSH6
(EP49, DAKO). IHC staining was evaluated as negative when all the tumor cells
showed loss of nuclear staining; tumors with one negative staining of these four
markers were considered as low level of microsatellite instable (MSI-L); tumors
with two or more negative staining of these four markers were considered as high
level of microsatellite instable (MSI-H); tumors with all 4 positive staining were
defined as MSS.

IHC staining of CD8 (Clone SP16, ZSGB-BIO) were annotated within
intratumoral areas; CD8+ density was quantified using Aperio Scanscope (Aperio
Technologies Vista, CA, USA) by the method of rare event tissue test. The total
number of CD8+ cells in each tumor area was counted based on six random
captured visual fields (400×400 m2), and the density of CD8+ T cells was defined as
the total cell number per square millimeter.

IHC staining of IDO (Clone D5J4E, CST) was scored numerically on the
intensity of IDO cytoplasmic staining (−, +, ++, +++) and percent tumor cells
staining positive (−: 0%, +: 1–33%, ++: 34–66%, +++: ≥66%). All scoring was
performed by two independent expert gastrointestinal pathologists (Z.L. and
Yumei Lai), who were blind to clinical outcomes or proteomic cluster results.

EBV infection status. Chromogenic in situ hybridization with EBV-encoded small
RNA (EBER) was performed to detect EBV infection using fluorescein-labeled
oligonucleotide probes (INFORMEBER Probe; Ventana). Specimen in which EBER
nuclear expression was observed in >20% of the tumor cells were considered EBER
positive.

Protein extraction and trypsin digestion. Samples were minced and lysed in lysis
buffer (8 M Urea, 100 mM Tris Hydrochloride, pH 8.0) containing protease and
phosphatase Inhibitors (Thermo Scientific) followed by 1 min of sonication (3 s on
and 3 s off, amplitude 25%). The lysate was centrifuged at 14,000×g for 10 min and
the supernatant was collected as whole tissue extract. Protein concentration was
determined by Bradford protein assay. Extracts from each sample (100 μg protein)
was reduced with 10 mM dithiothreitol at 56 °C for 30 min and alkylated with 10
mM iodoacetamide at room temperature in the dark for additional 30 min. Sam-
ples were then digested using the FASP method54 with trypsin; tryptic peptides
were separated in a home-made reverse-phase C18 column in a pipet tip. Peptides
were eluted and separated into nine fractions using a stepwise gradient of
increasing acetonitrile (6%, 9%, 12%, 15%, 18%, 21%, 25%, 30%, and 35%) at pH
10. The nine fractions were combined to six fractions, dried in a vacuum con-
centrator (Thermo Scientific), and then analyzed by liquid chromatography tan-
dem mass spectrometry (LC-MS/MS).

LC-MS/MS analysis. Samples were analyzed on Orbitrap Fusion, Orbitrap Fusion
Lumos, and Q Exactive Plus mass spectrometers (Thermo Fisher Scientific,
Rockford, IL, USA) coupled with an Easy-nLC 1000 nanoflow LC system (Thermo
Fisher Scientific), or a Q Exactive HF mass spectrometer (Thermo Fisher Scientific,
Rockford, IL, USA) connected to an UltiMate 3000 RSLCnano System (Thermo
Fisher Scientific). Dried peptide samples were re-dissolved in Solvent A (0.1%
formic acid in water) and loaded to a trap column (100 μm× 2 cm, home-made;
particle size, 3 μm; pore size, 120 Å; SunChrom, USA) with a max pressure of 280
bar using Solvent A, then separated on a home-made 150 μm× 12 cm silica
microcolumn (particle size, 1.9 μm; pore size, 120 Å; SunChrom, USA) with a
gradient of 5–35% mobile phase B (acetonitrile and 0.1% formic acid) at a flow rate
of 600 nl/min for 75 min. The MS analysis for QE HF and QE Plus were performed
with one full scan (300–1400m/z, R = 60,000 at 200m/z) at automatic gain control
target of 3e6 ions, followed by up to 20 data-dependent MS/MS scans with higher-
energy collision dissociation (target 2 × 103 ions, max injection time 40 ms, isola-
tion window 1.6m/z, normalized collision energy of 27%), detected in the Orbitrap
(R = 15,000 at 200m/z).

For detection with Fusion or Fusion Lumos mass spectrometry, a precursor
scan was carried out in the Orbitrap by scanning m/z 300−1400 with a resolution of

120,000 at 200m/z. The most intense ions selected under top-speed mode were
isolated in Quadrupole with a 1.6m/zwindow and fragmented by higher energy
collisional dissociation (HCD) with normalized collision energy of 35%, then
measured in the linear ion trap using the rapid ion trap scan rate. Automatic gain
control targets were 5 × 105 ions with a max injection time of 50 ms for full scans
and 5 × 103 with 35 ms for MS/MS scans. Dynamic exclusion time was set as 18 s.
Data were acquired using the Xcalibur software (Thermo Scientific).

Peptide identification and protein quantification. Raw files were searched
against the human National Center for Biotechnology Information (NCBI) Refseq
protein database (updated on 04-07-2013, 32,015 entries) by Mascot 2.3 (Matrix
Science Inc) implemented on Proteome Discoverer 1.4 (Thermo Scientific). The
mass tolerances were 20 ppm for precursor and 50 mmu for product ions from Q
Exactive Plus and Q-Exactive HF, and 20 ppm for precursor and 0.5 Da for product
ions for Fusion and Q-Exactive HF, respectively. Up to two missed cleavages were
allowed. The search engine set cysteine carbamidomethylation as a fixed mod-
ification and N-acetylation, oxidation of methionine as variable modifications.
Precursor ion score charges were limited to +2, +3, and +4. The data were also
searched against a decoy database so that protein identifications were accepted at a
false discovery rate of 1%. Label-free protein quantifications were calculated using a
label-free, intensity-based absolute quantification (iBAQ) approach18.

Proteins with at least 2 unique peptides with 1% FDR at the peptide level and
Mascot ion score greater than 20 were selected for further analysis. Among all
11,340 proteins of this proteomics dataset, 9186 proteins met this requirement. The
FOT was used to represent the normalized abundance of a particular protein across
samples. FOT was defined as a protein’s iBAQ divided by the total iBAQ of all
identified proteins within one sample. The FOT was multiplied by 105 for the ease
of presentation (Supplementary Data 2). We analyzed the 1008 (168 × 6) raw files
together for uniformed quality control and protein identification with 1% global
protein FDR. The file used for protein inference and protein FDR calculation was
derived from Mascot search results, and the peptide spectrum match (PSM) was
filtered via Percolator and customized parameters, and then the proteins were
assembled. The protein FDR was calculated depending on the ratio of NPD (the
number of assembled proteins from decoy database searches) and NPT (the
number of assembled proteins from target database searches). In this dataset, the
FDR of PSMs was 0.08% and FDR of peptide was 0.09%.

MS Platform QC and DGC proteome QA. For quality control (QC) of the MS
performance, tryptic digestions of the 293T cell lysate were measured as QC
standard every 2 days. The QC standard was made and run using the same method
and conditions and same software and parameters for GC. Pairwise Spearman’s
correlation coefficient was calculated for all QC runs and the results are shown in
Supplementary Fig. 2a. The average correlation coefficient among standards was
0.86 with the maximum and minimum of 0.99 and 0.76, respectively. The log10
transformed FOTs for each GC sample (Supplementary Fig. 2b) were plotted to
show consistency of data quality.

Proteome data filtering and missing data imputation. The following filter cri-
teria were applied for each statistical analysis shown in Fig. 1a. (1) Dataset 1 (D1)
included all 11,340 identified GPs on 1% of global FDR. (2) For dataset 2 (D2),
proteins were required to have at least 2 unique peptides with 1% FDR at the
peptide level and Mascot ion score greater than 20. Subcellular localization,
molecular function type, and target drug(s) were annotated using Ingenuity®

Pathway Analysis (IPA®, QIAGEN). (3) For dataset 3 (D3), we excluded keratins
and proteins whose maximum FOT in all 168 experiments were less than 10−5 in
FOT, which was chosen as the minimum value according to Supplementary Fig. 3a
and 3b. (4) For dataset 4 (D4), proteins were required to be identified in at least
one-sixth (28) of all samples (either tumor or nearby tissue). (5) For dataset 5 (D5),
the FOTs of all proteins whose FOT values were less than 10−5 were replaced with
10−5 to adjust extremely small values, and calculated the log 10 of tumor-nearby
ratios. (6) For dataset (D6), proteins were required to have T/N ratio larger than 3
or less than 1/3, in at least 1/10 of patients (8 patients).

Proteome data analysis. PCA was performed to visualize separation of tumors
and nearby tissues (Jolliffe 2002). SAM55 (samr R package) was performed to find
differentially expressed proteins between tumors and paired nearby tissues of all 84
patients and within each clusters (Supplementary Data 3). Other than the anno-
tations mentioned above, we added target drug results from The Drug Gene
Interaction Database (DGIdb 2.0)56, stomach-related specific expressed type, and
tissue from tissue-based human proteome map20. Data type was set as two class
paired, not centered array data for SAM; delta value was set respectively to meet
FDR <0.01. The differentially expressed genes defined here must meet the fol-
lowing criteria: (1) q-value less than 0.01, and (2) differentially expressed per-
centage larger than 50%, which was calculated using the following formula:

Differentially expressed percentage ¼ N tumor up � N tumor down

�
�

�
�

N total detected
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where N tumor up means number of patients with T/N ratio larger than 3,
N tumor downmeans number of patients with T/N ratio less than 1/3.

Fisher’s exact test was used to find enriched gene sets/pathways (including 186
Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets57, 217 Biocarta gene
sets, 674 Reactome gene sets58, 196 PID gene sets59 and 50 cancer hallmark gene
sets from MSigDB V5.160) by differentially expressed genes (Supplementary
Data 4). The 9186 genes detected in D2 were used as the background.

Wilcoxon rank-sum test was used to identify proteins with significantly
different expression between mutant samples and wild-type samples and was also
used to compare expression of stomach-specific and not stomach-specific proteins.

For mutation altered proteome, up-regulated proteins in mutated tumor tissues
are: (1) differential expressed in mutated tumors and wild-type tumors (P< 0.05,
Wilcoxon rank-sum test); (2) mean value of mutated tumors/wild-type tumors
>1.6. Down-regulated proteins are: (1) differential expressed in mutated tumors
and wild-type tumors (P< 0.05, Wilcoxon rank-sum test); (2) mean value of
mutated tumors/wild-type tumors <0.33.

Jaccard index was used to calculate similarity among altered proteomes
correlated to high-frequent mutants. Jaccard index between mutation altered
proteome i and proteome j was defined as altered proteomes i\altered proteomes j

altered proteomes i ∪ altered proteomes j, where ∩
denotes intersection between altered proteomes i and j, and ⋃ denotes union
between altered proteomes iand j.

Proteome molecular subtyping of DGC. Consensus clustering was performed
using the R package ConsensusClusterPlus61. Samples were clustered using
Euclidean distance as the distance measure. A total of 2538 proteins in D6 were
used for k-means clustering with up to 6 clusters. The consensus matrices for k = 2,
3, 4 clusters are shown in Supplementary Fig. 4. The consensus matrix of k =
3 showed clear separation among clusters; the average silhouette width for k = 2, 3
(0.08) was higher than k = 4 (0.06), indicating stronger cluster separation. The
cumulative distribution function (CDF) of the consensus matrix for each k-value
was also measured (Supplementary Fig. 4b and 4c). Clustering by k = 3 had the
lowest proportion of ambiguous clustering (PAC). The relative change in area
under the CDF curve increased 30% from 2 clusters to 3 clusters, while others had
no appreciable increase. Taken together, proteome clusters were defined using k-
means consensus clustering with k = 3.

Survival analysis. All survival analysis used Kaplan–Meier method and the dif-
ference was tested using the log-rank test. Coefficient value, which equals to ln
(HR), was calculated from Cox proportional hazards regression analysis. P-values
less than 0.05 were considered as significantly different. OS was used as primary
endpoint. Clinical variables analyzed with P-value less than 0.05 using single
variant analysis were chosen to enter Cox regression multivariate analysis. The
SPSS 22.0 software (IBM Corp.) and the R package “survival” was used for survival
statistical tests.

Nomination of prognosis-related druggable candidates for DGC. We used two
steps to nominate drug target candidates for DGC. First, we picked proteins that
were overexpressed in tumors; second, we selected overexpressed proteins that
were associated with worse OS to screen prognosis unfavorable therapeutic targets.
A total of 159 genomic data discovered druggable cancer drivers/candidates were
evaluated26–28. The drugs are comprised of (1) the Food and Drug Administration
(FDA)-approved drugs, including direct targeting, indirect targeting, gene therapy,
strong off-target and mild off-target; (2) drug in clinical trials, including direct
targeting, indirect targeting and gene therapy; (3) pre-clinical ligand; (4) potentially
druggable; and (5) potentially biopharmable.

Targeted exome sequencing. A capture panel was developed, which covered
coding exons and flanking splicing junctions for 274 gastric cancer driver genes
(Supplementary Data 2). This gene list collected all the significantly mutated,
amplified, deleted genes in gastric cancer, especially diffuse-type gastric cancer,
from three model studies8, 10, 11 as well as all 138 cancer driver genes19. For each
pair of tumor and paired nearby samples, genomic DNA was extracted either
manually or automatically using the Gentra Puregene (Qiagen). DNA concentra-
tion was measured by a NanoDrop 1000 spectrophotometer (Thermo Scientific,
Wilmington, DE). Briefly, 1 μg of genomic DNA from each sample was
mechanically sheared, end repaired, and ligated to molecularly bar-coded adaptors
to generate sequencing libraries following the manufacturer’s standard protocol
(Illumina). Co-capture was performed on pooled DNA libraries in groups of up to
48 samples. Captured sample DNA was sequenced on an Illumina HiSeq 2000
according to the standard operating protocol.

Paired-end reads in Fastq format were aligned to the reference human genome
(University of California, Santa Cruz (UCSC) Genome Browser62, hg19) using
Burrows–Wheeler Aligner (BWA)63. Aligned reads were further processed
following the GATK Best Practices of duplicate removal64, indel realignment, and
recalibration. Somatic single-nucleotide variations (SNVs) and small insertions and
deletions (Indels) were detected by MuTect65 and Pindel66, respectively. In
addition, variants were filtered against the ExAC67 database using a cut-off of 0.1%.
SNVs and Indels were annotated using SnpEff68 based on UCSC known genes. Of
the 274 exome targeted sequencing genes, 183 met the requirements of variant

allele frequency more than 0.05 in tumor tissues and less than 0.03 in paired
normal tissues and were selected for further analysis. OncoPrint69 was used to
show 39 mutant genes with nonsynonymous mutation rate higher than 5%
(Fig. 1d).

Mutation mapper69, 70 was used to map location and frequency of mutations for
TP53, ATM, and ARID1A, for these three genes showed significantly changed
protein expression after mutation (Supplementary Fig. 5a), as well as other highly
mutated genes in our cohort. Genes’ mutation profile was used to generate
pathways’ mutation profile in each patient. A pathway was mutated when at least
one gene in the pathway was mutated. Tested pathways included all gene sets from
Canonical Pathways from MSigDB V5.160.

Western blot. For each sample, 20 μg of protein extracts from the previous step
(See section Protein extraction and trypsin digestion) was separated on 10%
sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The proteins were
transferred onto nitrocellulose membranes. After blocking with 5% milk (BD
Science) solution in TBST (Tris buffered saline with Tween) for 1 h, the mem-
branes were incubated with 5% milk containing appropriate primary antibodies
overnight at 4 °C followed by 2 h of incubation with horseradish peroxidase-
conjugated secondary antibodies. Signals of target protein bands were detected
using Chemiluminescent detection reagent. IDO1 antibody (CST #86630) and β-
tubulin antibody (CW0098) were used in a 1:1000 dilution.

Data availability. The proteomics data is accessible in the PRIDE Archive under
the accession number PXD008840. The targeted exome sequencing data is acces-
sible in NCBI SRA under the accession number SRP131815.
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