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Globalinsightsinto cellular organization and genome function require
comprehensive understanding of the interactome networks that mediate genotype-
phenotype relationships*2. Here we present a human ‘all-by-all’ reference interactome
map of human binary protein interactions, or ‘HuRI'. With approximately 53,000
protein—protein interactions, HuRI has approximately four times as many such
interactions as there are high-quality curated interactions from small-scale studies.
Theintegration of HuRIwith genome?, transcriptome* and proteome’® data enables
cellular function to be studied within most physiological or pathological cellular
contexts. We demonstrate the utility of HuRI in identifying the specific subcellular
roles of protein-protein interactions. Inferred tissue-specific networks reveal general
principles for the formation of cellular context-specific functions and elucidate
potential molecular mechanisms that might underlie tissue-specific phenotypes of
Mendelian diseases. HuRl is a systematic proteome-wide reference that links genomic

variation to phenotypic outcomes.

Thereference human genome sequence has enabled systematic study
of genetic® and expression* variability at the organism¢, tissue*, cell
type’ and single-celllevel®. Despite advances in sequencing genomes,
transcriptomes and proteomes, we still understand little about the
cellular mechanisms that mediate phenotypic and tissue or cell type
variability. A mechanistic understanding of cellular function and
organization emerges from studying how genes and their products,
primarily proteins, interact with each other, forming a dynamicinter-
actome that drives biological function. Analogous to the reference
human genome sequence®, a reference map of the human protein
interactome, generated systematically and comprehensively, isneeded

to provide ascaffold for the unbiased proteome-wide study of biologi-
cal mechanisms, generally and within specific cellular contexts.

It remainsinfeasible to assemble a reference interactome map by sys-
tematically identifyingendogenous protein-protein interactions (PPIs)
in thousands of physiological and pathological cellular contexts™2,
However, systematic affinity purification of exogenously expressed bait
proteinsinimmortalized-cell contexts® as well as binary PPl detection
assays in cell models*** have generated biophysical human protein
interactome maps of demonstrated high functional relevance. Specifi-
cally, yeast two-hybrid (Y2H) represents the only binary PPl assay that
can be operated at sufficient throughput to systematically screen the
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human proteome for binary PPIs. Using Y2H followed by validation
in orthogonal assays, we previously generated HI-1I-14 consisting of
approximately 14,000 PPIs involving 4,000 proteins from screening
around 40% of the genome-by-genome search space?. In contrast to
curated interactions from hypothesis-driven small-scale studies and
protein complexinteractome maps that favour highly expressed pro-
teins, HI-1I-14 covers the proteome more uniformly andis relatively free
from ascertainment and expression biases.

Toincrease interactome coverage and generate a reference map of
human binary PPIs, we expanded the ORFeome collection to encom-
pass approximately 90% of the protein-coding genome. We screened
this search space a total of nine times with a panel of three Y2H assay
versions (Fig. 1a, b). The resulting PPl map quadruples the number of
identified PPIs overall, and upon integration with genome, transcrip-
tome and proteome resources enables biological discovery across
most cellular contexts, offering a reference map of the human binary
proteininteractome.

Generation and characterization of HuRI

The newly established human ORFeome v9.1 covers 17,408
protein-coding genes (Extended DataFig.1a, b, Supplementary Tables1,
2), forming a search space (Space Ill) that encompasses over 150 mil-
lion pairwise combinations (Fig. 1a). This search space more than dou-
bles the space screened to generate HI-1I-14 and represents the most
comprehensive search space systematically screened for human PPls.
Limitations in sensitivity of the PPl assay can be overcome by using dif-
ferent assays™ or different versions of the same assay'”'®, To maximize
sensitivity we used three Y2H assay versions (Fig. 1b, Supplementary
Tables 3, 4) that showed good sensitivity and low false-positive rates
when benchmarked against gold-standard positive and randomrefer-
ence sets (PRSvl and RRSVI, respectively)”, while detecting comple-
mentary PPl sets (Extended Data Fig. 1c, d, Supplementary Table 5).
We assessed assay performance using a test space of approximately
2,000-by-2,000 human genes? (Extended DataFig. 1e, Supplementary
Table 6). The Y2H versions were complementary, in that three screens
foreachof'thethree versions doubled the number of detected PPIsand
proteins relative to nine screens using asingle version (Extended Data
Fig.1f, Supplementary Table 7).

To map the reference interactome, we performed nine screens of
Spacelll, followed by pairwise verification by quadruplicate retesting
and sequence confirmation. PPIs verified by two orthogonal binary
PPl assays, MAPPIT® and GPCA?°, were recovered at rates on par with
high-confidence binary PPIsfrom theliterature (each having atleast two
pieces of experimental evidence, with at least one from a binary assay
type; Lit-BM) over alarge range of score thresholds (Fig. 1c, Extended
DataFig.1g, h, Supplementary Table 8). Each additional screenidenti-
fied new PPIs and proteins, with the largest gains obtained by switching
assay versions (Fig. 1d, Extended Data Fig. 1i). The dataset, versioned
HI-111-20 (Human Interactome obtained from screening Spacelll, pub-
lished in2020), contains 52,569 verified PPIs involving 8,275 proteins
(Supplementary Table 9). Although our knowledge of the interactome
remains incomplete, we refer to HI-111-20 as a reference map of the
humanbinary protein interactome (HuRI) given its systematic nature,
extensive coverage, and scale.

Molecular mechanisms canbe more readily inferred from direct than
indirect PPIs, yet the fraction of PPIsreported in various human protein
interactome maps that are direct remains unknown. Structures from
protein complexes with at least three subunits* show that, within those
complexes, more PPIsin HuRI correspond to direct biophysical contacts
than do PPIs from Lit-BM (90% versus 81%, P=0.019, two-sided Fisher’s
exact test, n=121and 410 for HuRI and Lit-BM, respectively) or from
protein complexinteractome maps (<50%, P< 0.001 for all tested maps,
two-sided Fisher’s exact test, n = 584-1,211) (Fig. le, Supplementary
Table 10). Combining HuRI with all previously published systematic
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Fig.1|Generation of areference interactome map using a panel of binary
assays. a, Overview of HuRI generation. b, Schematic of the Y2H assay versions.
¢, Experimental validation. Lit-BM, literature-curated binary PPIs with multiple
evidence; RRS, random protein pairs. Error bars are 68.3% Bayesian confidence
interval. MAPPIT:n=2,281,383 and 475; GPCA:n=1,639,382and 465 (from left
toright).d, Number of PPIs detected with each additional screen. e, Fraction of
direct contact pairsamong five PPI networks. Error bar isstandard error of
proportion.n=121,410,1,169,584 and 1,211 PPIs (from left to right). f, Number
of PPIsidentified over time from screening at the Center for Cancer Systems
Biology (CCSB) and Lit-BM.

screening efforts at CCSB yields 64,006 binary PPIs involving 9,094
proteins (HI-union) (Supplementary Table 11), whichis approximately
fivefold more PPIs than the entirety of high-quality binary PPIs curated
from the literature (Fig. 1f, Extended Data Fig. 2, Supplementary
Tables 12-14). The union of Lit-BM and HI-union represents the most
complete collection of high-quality direct PPl data available to date
(http://interactome-atlas.org).

Complementarity of the three Y2H versions might stem from steric
constraints that differ between protein fusions used in the assays. Inte-
grating HuRI with structures of PPIs?, we observed reduced sensitiv-
ity of Y2H assays where the interaction interface was close (<20 A) to
whichever terminus was fused to the Gal4 activation domain (Extended
DataFig.3a, b, Supplementary Table 15). PPIs found in several screens
hadlargerinteractioninterfaces (P=0.03, two-sided permutation test,
n=234)and corresponded more often to direct PPIs within, rather than
between, protein complexes (P=3x107, two-sided Fisher’s exact test,
n=1,817); however, HuRI PPIs found in a single screen were observed
to have precision as high as those found inmultiple screens (Extended
DataFigs.3c-g, 4, Supplementary Tables16-18, Supplementary Note1).
Theseresults reinforce previous observations>* that the protein inter-
actome might be dominated by weaker and more transient PPIs thatare
difficult to detect, asindicated by the fact that most PPIsin HuRI were
foundinonly onescreen (Extended DataFig. 3h, i). Thisisreflected in
anincreased estimate of the binary protein interactome size (Extended
DataFig. 3j), sothat HuRlis estimated to represent 2-11% of the binary
proteininteractome? (Supplementary Note 2).

Functional relationships in HuRI

On the basis of the observation that HuRl is enriched in direct PPIs,
we also hypothesize that proteins in HuRI with similar interaction
interfaces tend to share interaction partners. For example, retinoic
acidreceptors RXRG and RXRB (Extended Data Fig. 5a, left) share previ-
ously reported interaction partnersinvolving binding to retinoic acid
receptor RAR types* and oxysterol receptors NR1group H types®. We
derived a profile similarity network (PSN) from HuRI (Supplementary
Table19), and found that the number of pairs of proteins in HuRI with
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similarinteraction profilesis higher than random (P< 0.01, one-sided
empirical test) (Extended Data Fig. 5b) and proteins of overall higher
sequence identity tend to exhibit higher interaction profile similari-
ties (P< 0.01, one-sided empirical test) (Extended Data Fig. 5c). We
also found that proteins with a tendency to share interaction part-
ners often have interaction interfaces that are similar, as opposed to
complementary, and therefore tend not to interact with one another,
except where proteins originate from acommon ancestor that could
self-interact® (Extended Data Fig. 5d). Indeed, for only 5% of the pro-
tein pairs found tointeractin HuRI did the pair share more than 10% of
theirinteraction partners. Both HuRI PPIs and the PSN are enriched for
links between proteins of similar function (P< 0.01, one-sided empiri-
caltest) (Fig. 2a, Supplementary Table 20, Extended Data Fig. Se, f) and
both contain more functional modules? than our previously published
interactome maps>* (Fig. 2b, Extended Data Fig. 5g). Thus, HuRI and
the PSN are complementary maps of functional relationships between
proteins.

Asshownabove, global sequence identity between two proteins can
beindicative of shared interactioninterfaces; however, it probably fails
toidentify pairs of proteins whose shared interaction interface is small.
Indeed, 50% (502) of all protein pairs in HuRI with interaction profile
similarities >0.5 exhibit <20% sequence identity, so that functional
relationships identified by the PSN are not necessarily identifiable by
sequenceidentity. One such protein pairis the endoplasmic reticulum
(ER) transmembrane protein TMEM258 and the uncharacterized pro-
tein CI90RF18, which have only 10% sequence identity but share 80% of
theirinteractors (Extended DataFig. 5a, right). TMEM258 catalyses the
firststepin N-glycosylation of proteinsin the ERand might have arole
in protein translocation across the ER*, Rolesin protein transport and
ER function have also been ascribed to two of the four shared interac-
tion partners, ARL61P1?’ and IER3IP1?°, which suggests that CI9ORF18
and potentially the other two shared interaction partners (MFSD6 and
AC012254.2) contribute to ER-related functions of protein maturation
and transport.

Uncharted disease-related interactions

Unlike Lit-BM, HuRI was generated by systematically testing protein
pairs for interaction. While Lit-BM is highly biased towards the most
studied genes?, HuRI covers the genome-by-genome space more
uniformly and at increased depth compared to Lit-BM and our pre-
vious screening efforts (Fig. 3a, Extended Data Fig. 5h). Notably, we
find that the agreement between Lit-BM and HuRlI is highest among
the best-studied genes, in which Lit-BM is most complete and where
approximately 40% of the PPIs in HuRI have been previously identi-
fied (Fig.3b). HuRI substantially expands the number of biomedically
interesting genes for which high-quality direct PPl data are available
(Fig. 3¢, Extended Data Fig. 5i), and finds new interaction partners for
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thesegenesin previously uncharted regions of the proteininteractome
(Fig. 3d, Extended Data Fig. 5j).

Essential proteins were often found to have significantly more inter-
action partners>. However, correlation between two variables does
not necessarily indicate causality, especially where there are other
confounding variables (Extended Data Fig. 5k). We find that protein
popularity (measured by publication count) and endogenous expres-
sion level strongly correlate with: (i) each other; (ii) the number of inter-
action partners (‘degree’) in protein complex and literature-curated
proteininteraction networks but not in HuRI; as well as (iii) gene prop-
erties such as essentiality, age®, fitness effect® and loss-of-function
intolerance® (Extended Data Fig. 51, Supplementary Table 21). After
correcting for popularity and expression level, we found substantially
reduced correlations between interaction degree and other gene prop-
erties, including gene essentiality (Fig. 3e, Extended Data Fig. 5m, n).
Inline with previous observations, this suggests that correlations
between degree and essentiality, age, loss-of-function intolerance,
and fitness effects are confounded by underlying expression and study
biases, and thus may not reflect causal relationships. These results
highlight the value of HuRI as a uniformly-mapped reference for the
study of systems properties of genes and networks.

Compartment-specificroles of PPIs

Proteins arelocalized to specific compartments, carrying out functions
that depend both on the subcellular environment and the local PPI
network. Despite available proteome-wide datasets on the localiza-
tion of individual proteins®, experimental determination of cellular
localization-specific PPl networks remains challenging. We find that
proteinslocalizing to adiverse range of subcellular compartments are
evenly represented in HURI (Extended Data Fig. 6a), suggesting that
cellular localization-specific PPl networks can be inferred for many
different cellular compartments viaintegration of HuRI with available
protein localization data.

Extracellular vesicles have beenstudied intensively using proteomics
approaches®. However, our understanding of the molecular mecha-
nisms that lead to protein recruitment into extracellular vesicles and
subsequent secretion remains limited. The subnetwork of interactions
between extracellular vesicle proteins (Extended Data Fig. 6b) shows
significantly higher connectivity in HuRI than in degree-controlled
randomized networks (P<0.001, one-sided empirical test) (Extended
DataFig. 6¢), enabling prediction of recruiters of extracellular vesicles
using the number of interaction partners. Seven of the top twenty-one
most connected proteins in this extracellular vesicle network have
established roles in extracellular vesicle biogenesis or cargo recruit-
ment*, SDCBP (syntenin-1) functions in ESCRT-dependent generation
of extracellular vesicles, and its knockout shows reduced extracellular
vesicle production®. SDCBP has 48 PPIs with other extracellular vesicle
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proteinsand isfrequently detected in extracellular vesicles, which sug-
geststhatitregulates recruitment of interacting proteins into extracel-
lular vesicles. To test this hypothesis (Fig. 4a), we knocked out SDCBP
inthe U373vlll cellline (Extended Data Fig. 6d). Of six SDCBP partners
detectedinthe U373vlll extracellular vesicle proteome, three (CALM1,
CEP55 and HPRT1) displayed significantly reduced protein levels in
extracellular vesiclesin the SDCBP-knockout line (P<0.05, one-sided
empirical test, depletion <0.66) (Fig. 4b). By contrast, only 15% of the
non-interaction partners of SDCBP were reduced (P=0.042, one-sided
empirical test) (Extended Data Fig. 6e). Thus, SDCBP may have a role
inthe recruitment of proteins into extracellular vesicles, highlighting
the potential value of HuRl in studying protein function within specific
subcellular contexts.

Proteins often change subcellular localization, for example, as part
of their maturation process or in response to external or internal signal-
ling events. These dynamics are difficult to comprehensively capture
at proteome-scale, yet existing efforts have already revealed numerous
proteinsthatlocalize to multiple subcellular compartments withsome
pairs of compartments exhibiting considerably more shared member-
ship (crosstalk) than others®. Despite a tendency for interactions in
HuRI to link proteins localized to the same compartment (P< 0.01,
one-sided empirical test) (Fig. 2a), a considerable number of interac-
tions were identified between proteins never reported to co-localize.
To explore whether lack of co-localization of interacting proteins in
HuRI might originate from incomplete localization data, we assessed
whether these non-co-localized interacting proteins tend to reside in
compartments with significant crosstalk and observed a significant
positive correlation (P < 0.001, one-sided empirical test) (Extended
DataFig. 6f-h). This suggests that HuRI could prove useful in predict-
ing protein localization dynamics.

Principles of tissue-specific function

Despite recent advances in systematic genome-wide identification
of tissue-preferentially expressed (TiP) genes* (Extended Data Fig. 7,
Supplementary Table 22), we lack a concrete understanding of how
the surprisingly small set of TiP genes operate together and coordi-
nate their activity with the core ‘housekeeping’ machinery to mediate
tissue-specific functions. Insights can be obtained from investiga-
tion of the tissue-specific network context of TiP proteins, inferred
fromintegrating proteininteractome datawith tissue transcriptomes
(Supplementary Table 23). However, we should not expect uniform
coverage of TiP proteins with PPIs using experimental methods that
demand expression of both partners within asingle immortalized cell
line or result from screening anincomplete ORFeome. Indeed, contrary
to protein complex' ™ and literature-curated interactome maps>® as
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well as our previously published binary PPl datasets*'*, we find that TiP
proteins are well-represented in HuRI (Fig. 5a, Extended Data Fig. 8a).

Restricting HuRI to PPIs between proteins expressed in the same
tissue, we observe that TiP proteins engage in as many PPIs and are as
central as more uniformly expressed proteins (Extended Data Fig. 8b),
in contrast to previous observations using literature-curated PPl net-
works**°, This result, paired with the fact that PPIs mediated by a TiP
protein are effectively also tissue-specific, leads to the finding that the
fraction of tissue-specific PPIsin the proteininteractome as character-
ized by HuRlis higher than that of tissue-specific genesin the expressed
genome, indicating that substantial information on tissue-specific
functions can only be obtained from the interactome. The opposite
is observed for Lit-BM, probably owing to its bias against TiP genes
(Extended Data Fig. 8c).

To investigate the local network neighbourhoods of TiP proteins
within their respective tissue contexts, we used HuRI to derive pro-
tein interactome maps for 35 tissues**, each of which contains about
25,000 PPIs (Supplementary Table 24, Extended Data Fig. 8d). Within
each tissue PPl network, we focused on the interactions involving at
least one TiP protein (Fig. 5b). The TiP PPl networks show extensive
interactions between TiP and non-TiP proteins, but with few TiP-TiP
PPIs. Despite significant enrichments for HuRIto link proteins that work
inthe same biological process (Fig. 2a), TiP-TiP PPIs, as highlighted for
braininFig.5c,arenotenriched, noris the average shortest pathamong
TiP proteins shorter thanin degree-controlled randomized networks
(P>0.05, empirical test). Using either metric, TiP proteins were found
to be significantly close to each other in only six of 35 tissues. In four
of these six tissues, enrichment for network proximity was driven by
clusters of specifically expressed keratins or late-cornified envelope
proteins (Extended DataFig. 8e). These results supportamodelin which
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tissue-specific functions emerge through interactions between TiP
proteins and more uniformly expressed members of the basic cellular
machinery, presumably modulating and adapting common cellular
processes for cellular context-specific needs*.

One biological process with both cell-type and
developmental-stage-specific homeostatic roles is apoptosis. We
used HuRlI to identify proteins with interaction partners that were
enriched for known apoptosis regulators (Supplementary Table 25).
Five proteins among the top ten predictions had previously demon-
strated roles in apoptosis (Supplementary Note 3). Among three TiP

genes predicted to be implicated in apoptosis (Extended Data Fig. 8f,
g), we further examined OTUD6A. Abundance of OTUD6A negatively
correlated with time-of-death after addition of TRAIL (TNF-related
apoptosis-inducingligand; P=0.012, two-sided, empirical test, n=40
cells), but not after expression of OTUD6A alone (Extended DataFig. 8h,
Supplementary Table 26), suggesting that OTUD6A participatesinthe
apoptosis pathway but is not an inducer of cell death. This and other
evidence (Extended DataFig. 8f, i, Supplementary Note 3) suggests that
OTUDG6A exerts an apoptosis sensitization function viatranscriptional
activationin a haematopoietic cellular context.

Mechanisms of tissue-specific diseases

Many Mendelian diseases display tissue-specific phenotypes, rarely
explained by tissue-specific expression of genes with disease-associated
mutations*® (Fig. 5d, Extended DataFig. 9a). Such mutations broadly or
specifically affect PPIsinvolving the mutated protein*‘. Perturbations
of PPIs between uniformly expressed disease-associated proteins and
TiP proteins in the affected tissues have been suggested to underlie
the tissue-specific phenotypes of those diseases*. In HuRI-derived
tissue PPInetworks, we find 130 such PPIs involving 63 distinct non-TiP
disease-causal proteins and 94 TiP proteins. Although we see no enrich-
ment for PPIsbetween causal proteins and TiP proteins (Extended Data
Fig. 9b, Supplementary Note 4), this does not rule out the possibility
that perturbations of some of these interactions mediate tissue-specific
phenotypes of Mendelian diseases.

Toexplorethis hypothesis, we experimentally tested whether patho-
genicvariants associated with Mendelian diseases were able to perturb
these PPIs. Of ten causal proteins tested, seven showed perturbation of
PPIs to preferentially expressed interaction partnersin the correspond-
ing ‘disease tissues’ (Fig. 5e, Extended Data Fig. 9¢, d, Supplementary
Tables 27, 28). One example is PNKP, mutations of which have been
associated with microcephaly, seizures and developmental delay. The
pathogenic PNKP mutation Glu326Lys does not affect the DNA kinase or
DNA phosphatase activity of PNKP, rendering the mechanism of patho-
genicity unclear®. We observed that Glu326Lys perturbed PPIs with two
partners preferentially expressed in the brain, SYNGR1 and TRIM37,
whereas abenign control mutation Pro20Ser*® did not affect any PNKP
PPIs (Fig. 5f, Extended Data Fig. 9c, ). TRIM37 facilitates DNA repair®,
suggesting a potential mechanism by which perturbation of thisinterac-
tion could affect the brain-specific DNA repair function of PNKP. In other
examples, HuRIidentified CTNNA3 and SUCLA2 to have respective TiP
interaction partners TRIM54 and ARL6IP1 (Extended DataFig.10), which
cause similar diseases with overlapping symptoms***°, supporting the
relevance of these interactionsinthe physiopathology. Overall, this study
yields hypotheses of molecular mechanisms for otherwise unexplained
tissue-specific phenotypes of seven Mendelian diseases (Extended Data
Fig. 9d) and demonstrates the utility of HuRI as a reference to study
biological mechanisms within specific disease contexts.

Discussion

Here, we present HuRlI, a systematically generated human protein
interactome map with more than 50,000 PPIs of high biophysical
quality. Although HuRlI displays highly significant overlap with known
functional relationships, the cellular function of most individual PPIs
remains tobe determined. We show that follow-up studies on the func-
tion of proteins and PPIs can be guided by integration of HuRI with
contextual genome, transcriptome and proteome data to infer the
cellular context in which subnetworks of PPIs operate together to medi-
ateafunction. Withadvances in single-cell transcriptomics®as well as
systematic determination of subcellular protein localization, inference
of functional PPIsubnetworks that are specific for agiven cellular state
will further increase in precision. However, a priori removal of PPIs
fromHuRIbecause they are not currently known to function together
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inaphysiological cellular context could discard data that can help, for
example, tounderstand the functional consequences of dysregulated
gene and protein expression causing disease.

Despite our extensive screening, many PPIs remained undetected as
Y2H, like all characterized assays'>'**®, has limited sensitivity, detect-
ingnointeractions for half of the tested proteins. This negative result
can guide the design of future interactome mapping efforts to target
these proteins. Owing to the limitations of Y2H, we expect HuRI to
be depleted for PPIs that depend on post-translational processing of
human proteins that the yeast cell is unable to catalyse or that require
additional partners to stabilize the interaction. Screening only one
isoform per gene also missesinteraction partners specific to alternative
spliceforms®. Accurate estimation of the total size of the interactome
remains challenging. PPIs display a continuum of binding strength or
stability that, along with other factors, could underlie a continuum of
detectability, as this study suggests. Furthermore, the results obtained
by us and others indicate that very stable and functionally conserved
PPIs constitute a minority of the interactome.

Althoughincomplete, the uniform proteome andinteractome cover-
ageof HuRl enableitsuse as areference for the study of most aspects
of human cellular function. Efforts to further complete this reference
will require development of new technologies as well as integration
with complementary reference maps of protein complex assemblies®.
Although multiple challenges remain to be solved for a complete
and context-specific map of protein functions, interactions, and
higher-level organization, HuRI provides an unbiased genome-scale
scaffold with which to coordinate this information as it emerges.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

HuRlI, Lit-BM and all previously published human interactome maps
from CCSB are available at http://interactome-atlas.org. The PPl data
from this publication are also available through IntAct (https://www.
ebi.ac.uk/intact/) with the identifier IM-25472. All HuRI-related net-
works from this study are available at NDExbio.org (https://tinyurl.
com/networks-HuRI-paper). The raw and analysed proteomic data
have been deposited in the PRIDE repository (https://www.ebi.ac.uk/
pride/) with the accession number PXD012321.

Code availability
Analysis code is available at github.com/CCSB-DFCI/HuRI_paper.

Acknowledgements The authors gratefully acknowledge, in memoriam, support and insight
from D. Allinger. We thank P. Porras Millan and the IntAct team for their help in disseminating
our PPI data via IntAct, before and after publication. We thank U. Braunschweig, J. Ellis and B. J.
Blencowe for help with data analysis. We also thank Q. Zhu, O. G. Troyanskaya, J. Pan and C.
Kadoch for sharing co-expression and co-fitness data, respectively. We thank K. S. Tuttle for
help with graphics. This work was primarily supported by the National Institutes of Health (NIH)
National Human Genome Research Institute (NHGRI) grant U41HG0O01715 (M.V., F.PR., D.E.H.,
M.A.C., G.D.B. and JT.) with additional support from NIH grants PSOHG004233 (M.V. and F.P.R.),
UO1THL098166 (M.V.), UOTHGO07690 (M.V.), RO1IGM109199 (M.A.C.), Canadian Institute for
Health Research (CIHR) Foundation Grants (F.P.R. and J. Rak), the Canada Excellence Research
Chairs Program (F.P.R.) and an American Heart Association grant 1I5CVGPS23430000 (M.V.).
D.-K.K. was supported by a Banting Postdoctoral Fellowship through the Natural Sciences and
Engineering Research Council (NSERC) of Canada and by the Basic Science Research Program

through the National Research Foundation (NRF) of Korea funded by the Ministry of Education
(2017R1A6A3A03004385). C. Pons was supported by a Ramon Cajal fellowship (RYC-2017-
22959). G.M.S. was supported by NIH Training Grant T32CA009361. M.V. is a Chercheur
Qualifié Honoraire from the Fonds de la Recherche Scientifique (FRS-FNRS, Wallonia-Brussels
Federation, Belgium).

Author contributions The project was conceived and supervised by G.D.B., JT., D.E.H., M\V.,
F.P.R.and M.A.C. The Y2H assay versions were developed and benchmarked by K.S., A.D.R. and
Q.Z. with help from K.L., B.E.B. and D.B. hORFeome v.9.1 was generated by K.L., D.-K.K., K.S.,
W.B., M.D., D.B., D.M. and T.H. with help from A.G.C., A. Dricot, A.M., S.R., Y.S., GM.S., J.-CT. and
XY. The preparation of Y2H destination clones by en masse gateway cloning and yeast
transformations were performed by D.-K.K., K.S., A.G.C., J.J.K., R.L., D.M. with help from M.G.,
D.S.,S.S., BT, CC., G.H., Nv.L., A.R.and JW. The Y2H screens were performed and the data
analysed by K.L., K.S., B.E.B., M.D., A. Dricot, M.F.H., C. Pollis, S.S., BT., AT. and T.H. with help
fromW.B., T.C., B.C., A. Desbuleux, D.B., S.-F.C., A.M., D.M., J. Rasla, A.S.-M., Y.S. and YW. The
validation experiments were performed and the data analysed by T.C., A. Desbuleux, I.L., S.G.C.
and T.H. with help fromK.L., L.L.,K.S., D.B., S.D.R., Y.J., YK., S.R. and JT. Sequencing and
analysis of the sequencing data was performed by W.B., A.G.C., M.G., N.K., J.JK., J.C.M., Y.S. and
T.H. with help from K.L., D.-K.K., M.B., C.C., AG., R.L., AR, MT. and J.W. Integrative downstream
analyses were performed by K.L., D.-K.K., L.L., F.J.C.-L., I.A.K. and C. Pons with help from B.C.,
0.B.,GC.,D.D.R., M.D.-F., FG., G.H., JN.P, TR, E.S, EY.-L., Y.X., P.A. and J.D.L.R. Follow-up
experiments and analyses were performed by K.L., D.-K.K., K.S., R.B., D.C., S.D., A. Desbuleux
and AY. with help fromL.L., T.C., C.B.-C., GC., C.D.A., H.E., LG, E.H., S.L. and RJW. supervised
by S.G., J. Rak and V.T. The web portal was developed by MW.M. with help from K.L., M.H., TH.,
M.A.C. and G.D.B. The paper was written by K.L., D.-K.K., L.L., K.S., D.E.H., MV., F.P.R.and M.A.C.
with help fromF.J.C.-L., AG.C.,GC., S.G., |.AK., T.H. and AY. Authors other than co-first and
co-corresponding are listed alphabetically and contributed equally within their group.

Competing interests J.C.M. is a founder and CEO of seqWell, Inc; F.P.R.and M.V. are
shareholders and scientific advisors of seqWell, Inc.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2188-x.

Correspondence and requests for materials should be addressed to D.E.H., MV., F.P.R. or
M.AC.

Peer review information Nature thanks Ulrich Stelzl and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.


http://interactome-atlas.org
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://tinyurl.com/networks-HuRI-paper
https://tinyurl.com/networks-HuRI-paper
https://www.ebi.ac.uk/pride/
https://www.ebi.ac.uk/pride/
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/s41586-020-2188-x
http://www.nature.com/reprints

20,000

15,000

10,000
0 e o
(\Q)

~’<° 3«\ 0\\ oé\
AN

Number of genes
o
=
8
8

hORFeome
vo.1

Y2H vi Y2H v2 Y2H v3

0.2

Fraction positive
°

MAPPIT

Fraction positive Fraction positive @
3 ° o o ° o
o s Yy o pe >
b4
s
0
.
<

o
IS
1

4
15}
I

MAPPIT
Fraction positive
o o
o N

4,103 13,305

Cumulative number of PPIs

915

Tissues
Cell types
Cell lines

(2]
o o o
© IS o

|_|

Fraction positive
o
Iy

o

0.0

PRSv1

~| rrsviH

—
Assay

<

Cumulative number of proteins

GPCA

0.2

o
o

GPCA
Fraction positive

Cumulative number of proteins
IS
=Y
o
8

123456789
Number of screens

Extended DataFig.1|See next page for caption.

o 1 2 3
Arbitrary units

ad

ALL2
CBorf44-SGK3
PMCH
SLC22A15
HPCAL4

RRSv1

HCLS1
PML

RIC3
PSMD5
COPB1
P?_TPIPZ
DENND6B
PGAP2
MYBL2
RAB3IP
GMPPA
aLCSQAM

ATAD2
ARHGEF15
HIST1 H1C
ZNF213
LBMBTLZ
MUC7
KIAA0907
ACVR1

OsM
PPP1R12B
NDP
SYCE1
DuT

JAK3
ZCCHC9
ZBTB25
CSGALNACT2
SERPINB3
INPP1



Article

Extended DataFig.1|Y2H assay development and validation of HuRI.

a, Number of protein-coding genesin hORFeome v9.1and GTEX (tissues),
FANTOM (cell types) and HPA (cell lines) transcriptome projects. The number
ofgenesinhORFeomev9.1is on par with the number of genes expressed in
three comprehensive individual transcriptome sequencing studies and
includes 94% of the genes with robust evidence of expressioninall three.

b, Overlap between hORFeome v9.1and intersection of transcriptomesina.
¢, Individualand combined recovery of PRSvl and RRSv1 pairs by Y2H assay
versions (n=252,270).d, Coloured squares showing which protein pairs were
detected in PRSv1 (left) and RRSv1 (right) by Y2H assay versions. e, Recovery

rates of LitBM and PPIs from screens ofa2,000-by-2,000 gene test space per
Y2H assay versionin MAPPIT. f, Cumulative PPl count performing three screens
witheach Y2H assay versionin the test space compared to nine screens with
Y2H assay version1.g, h, MAPPIT and GPCArecovery of Lit-BM and PPIs from
screens of Space lll when splitby screenatan RRS rate of 1% (g) or across arange
ofthresholds (h). Allerrorbarsinc,eandg, are 68.3% Bayesian confidence
interval;shaded errorbandinhisstandard error of proportionand n=between
101and 395 pairs successfully tested for each category. i, Number of proteinsin
HuRlI, detected witheach additional screen.
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Extended DataFig.3|Stericity and interactionstrength contribute to PPI
detectability. a, b, Fraction of PPIswith N or C terminus <10 A(a)or<20A (b) to
PPlinterface, for PPIswith known structureinand notin HuRI (n=37-1,891
PPIs). Error bars are standard error of proportion. The structure of UBE2D3
bound toRNF115illustrates anexample of a PPIfound only by Y2H assay version
3 (PDBcode5ULH).c, MAPPIT recovery rates of HuRl and Lit-BM PPIs that were
alsodetected in HuRI by the number of screens each pair was detected in. Error
barsare 68.3% Bayesian confidence interval (n=22-793 PPIs successfully
testedineach category).d, MAPPIT recovery rates of Lit-BM PPIs that were also
detectedin HuRlI, forincreasing number of pieces of experimental evidence
per PPl Errorbars are 68.3% Bayesian confidence interval (n =24-61PPIs
successfully tested in each category). e, f, Distributions of interactioninterface
area (e) or number of atomic contacts (f) by the number of HuRI screensin

which aPPlisdetected, withbox plots showing median, interquartile range
(IQR), and 1.5x IQR (with outliers); n=1,004 PPIs. g, Left, examples of
within-complexinteractions detected in HuRI (purple) and BioPlex (orange).
Right, fraction of HuRI PPIs between proteins of protein complexes that link
proteins of the same complex, split by PPIs found in single and multiple screens
(dark purple). Error bars are standard error of proportion; n=1,042and 775
PPIs, for single and multiple screens, respectively. h, Number of screens each
PPlin HuRIwas detected in, split by Y2H assay version. i, Number of Y2H assay
versions each PPlin HuRI was detected in.j, Estimates of the size of the total
binary proteininteractome and the fraction covered by HuRI, right and left,
respectively,as afunction of the minimum number of publications per gene
and the minimum number of evidence for the Lit-BM reference. Error bands are
68.3% Bayesian confidenceinterval; n>170 Lit-BM PPls.
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Extended DataFig.4 |HuRIprovides direct contactinformation for

further distinguished into PPIs found in single (light purple) or multiple
proteinsincomplexes. Intra-complex PPIs are shown for protein complexes screens (dark purple).

from CORUM as found in BioPlex (orange) or HuRI (purple). HuRI PPIs are
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Extended DataFig. 5| Topological and functional significance of HuRI.

a, Examples of protein pairsin HuRIwith high interaction profile similarity and
both high (left) and low (right) sequence identity. b, The number of pairs of
proteinsin HuRIand 100 random networks atincreasingJaccard similarity
cutoffs. Box plotsare asin Extended Data Fig. 3e. ¢, Enrichment over random
networks of the sum of Jaccard similarities of pairs of proteinsin HuRI at
increasing thresholds of sequenceidentity. Error bars are 95% confidence
intervals, centreisrelative to mean of randomnetworks. d, Fraction of PSN
edgesthatarealsoPPIsin HuRI, split by the PPIsinvolving no, one or two
self-interacting proteins (SIPs), atincreasingJaccard similarity cutoffs. Error
barsarestandard error of proportion.e, f, Enrichment over random networks
ofthe PPIcount (left) orsumof Jaccard similarities (right) of HuRI PPIs or PSN
pairs, respectively, atincreasing co-expression (e) and co-fitness (f) cutoffs.

Errorbarsare 95% confidence interval, centreisrelative to mean of random
networks. g, Functional modules in HuRI (top) and its PSN (bottom) with
functional annotations. h, Heat maps of PPl counts, ordered by number of
publications, for our previous humaninteractome maps and Lit-BMi, Fraction
of genes with atleast one PPIfor biomedically interesting genes. j, Heat maps of
HuRland Lit-BM PPl counts between proteins, ordered by number of
publications, restricted to PPIsinvolving genes from the corresponding gene
set.k, Schematic of relation between variables: observed PPl degree,
abundance, number of publications, and lethality.l, Correlation matrices. PPl
datasetsrefer to their network degree.m, Degree distribution of various PPI
networks. n, Empirical determination of significance of correlation between
various network degrees and gene properties. HuRI-2s, subset of HuRI found in
atleasttwoscreens.n=13,441-53,704 PPIs per network.
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Extended DataFig. 6| Co-localization of proteinsinteracting in HuRI.

a, 0ddsratios of proteins in different subcellular compartments and PPI
datasets.n=125-3,941 proteins per compartment, two-tailed Fisher’s exact
test.b, The subnetwork of HuRIinvolving extracellular vesicle proteins. Names
of high-degree proteins are shown. ¢, Number of PPIsin HuRI between
extracellular vesicle proteins (purple arrow) compared to the distribution from
randomized networks (grey).d, Western blots of SDCBP (left) and ACTB
(loading control, right) in wild-type and three knockout (KO) cell lines (#7-#9),
repeated twiceintwoindependentlaboratories. Full scanned image was
displayed, obtained by ChemiDoc MPimager (Bio-Rad). Cell line #8 was used
forextracellular vesicle proteomics. e, Fraction of proteins in whichabundance
inextracellular vesicles was significantly reduced in the SDCBP-knockout cell

line, splitby proteinsinteracting and not interacting with SDCBP asidentified
inHuRI. Error bars are standard error of proportion (n = 6 interactors, 638
non-interactors, *P=0.042, one-tailed empirical test). f, Schematicillustrating
that the number of HuRIPPIs between proteins from two different
compartments should correlate with the enrichment of both compartment
pairstooverlap, if co-localization annotationisincomplete. g, Scatter plot
showing, for each pair of subcellular compartments, odds ratios quantifying
theenrichment for proteinslocated in both compartments versus the
enrichmentof the density of PPIs between proteins located to either
compartment. Size of pointsis scaled by the standard error of the x axis
variable. Regression line and 95% confidence interval are shown. h, The z-score
oftheregressionslope of g compared to those of random networks.
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Extended DataFig.7|Investigation of tissue-preferential expressiondata. foreverytissue forincreasing tissue-preferential expression cutoffs.c, d,

a, Examples of genes displaying different levels of TiP gene expressionacross Differencesinnumber of TiP genes after removal of testis before TiP value
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Extended DataFig. 8| PPIsbetween TiP proteins and uniformly expressed
proteinslikely adaptbasic cellular processes to mediate cellular
context-specific functions. a, TiP protein coverage by CCSB PPI networks for
increasing levels of tissue-preferential expression. Shaded error bars are
proportional tostandard error of proportion, n>233 genes.b, Spearman
correlation coefficients and 95% confidenceintervals for correlations between
degree orbetweenness and tissue specificity for HuRIand Lit-BM (n= 6,684
and 4,971proteins). ¢, Fraction of HuRIand Lit-BM that involve TiP proteins
comparedto fraction of genome thatare TiP genes for increasing levels of
tissue-preferential expression. d, Number of PPIs in HuRl, involving proteinsin
GTEx, inwhichboth proteins are expressed in the same tissue, and the mean of
thetissue-specific subnetworks. Error bar denotess.d. e, Test for enrichment
of TiP-TiP PPIs (left) and significance of average shortest path between TiP

proteins (middle) ineach tissue subnetwork, number of TiP proteinsin each
subnetwork, interacting with other TiP proteins, being part of keratin (KRT) or
late-cornified envelope (LCE) protein family (right). f, g, Transcript expression
levels across the BLUEPRINT haematopoietic cell lineage (f) and GTEx tissue
panel (g) for three candidate genes predicted to function in apoptosis.

EG, oesophagus gastroesophageal. h, Histogram of number of untransfected
cellsand their time of death (left) without (top) and with (bottom) addition of
TRAIL. Time of death of cells expressing OTUD6A-GFP fusions versus OTUD6A
expression measured as fluorescence (right) without (top) and with (bottom)
addition of TRAIL. i, Apoptosis-related network context of OTUD6A and
C60RF222inHuRl, unfiltered (left) and filtered using colon transverse or
mature eosinophil transcript levels (right).
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Sample size 1. A sample size of ~250 pairs for categories in PPl validation assay experiments was chosen. This is based on a 95% Cl value of 5% inputting an
expected recovery rate of 20%, from previous similar experiments, using the standard error of proportion.
2. The test space for the pilot screens was screening a random 10% of the ORFeome against a different 10% amounting to 1% of the total
space. Based on previous experience with interaction density of screening, this was estimated to result in roughly 100 pairs per screen,
enough to observe differences between assay versions and the saturation effects of a few percent after several screens.
3. For comparative proteomics of extracellular vesicle (EV; in Fig. 4), we produced three biological replicates (at EV purification step).
4. For cell death assay (in Extended data fig. 8h), we preformed two replicates and obtained data for 40 cells in total which are displayed
together as single data points on the scatter plot. Based on our previous experience with live-cell imaging of cell death dynamics, we
anticipated that imaging n = 20 to 50 cells would allow us to effectively characterize the dynamics in each sample.

Data exclusions  No data were excluded.

Replication 1. For comparative proteomics, this gives us enough reproducibility, showing that we have significantly higher correlation between replicates
than that between samples (before & after SDCBP knock-out). In addition, knock-out of SDCBP was confirmed by this proteomics in all three
replicates and further confirmed by Wester blot.

2. For the cell death assay (Extended Figure 8h), the data presented collates data from two independent replicates of the experiments that
showed the same trends. Both experiments were carried out using the same plating and transfection conditions, using cells that were
passaged fewer than 10 times after receipt from ATCC.

Randomization  Screen pairs and controls for Y2H pairwise test, MAPPIT, and GPCA were randomly arranged on well plates.

Blinding Manual scoring of Y2H pairwise tests was blinded.
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Clinical data
Antibodies

Antibodies used Two antibodies were used for the SDCBP KO validation
1. Rabbit anti-SDCBP antibody (ab133267 with clone number ERP8102 and lot number GR282684-7) was purchased from Abcam
(Cambridge) and used with dilution of 1:2000.
2. Mouse anti-ACTB antibody (A5441 with clone name AD-15) was purchased from Sigma and used with dilution of 1:10000. Lot
number is not avaliable for this antibody.
3. Goat anti-rabbit IgG (HRP-linked) antibody (7074S with lot number 28) was purchased from Cell Signaling Technology and used
with dilution of 1:5000. Clone name was not provided by Cell Signaling Technology.
4. Goat anti-mouse 1gG (HRP-linked) antibody (1706516 with lot number 64055911) was purchased from Bio-Rad and used with
dilution of 1:5000. Clone name was not provided by Bio-Rad.

Validation No antidbodies were validated.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) 1. U373vlIl: the same cell line used in the many previous studies (Al-Nedawi, et al. Nat Cell Biol. 2008 May;10(5):619-24., et
al)

2. HelA: it was bought from ATCC (https://www.atcc.org/products/all/CCL-2.aspx)

3. HEK293T for GPCA: the same cell line used in the many previous studies (Choi, et al. Nat Commun. 2019 Aug 29;10
(1):3907.)

4. HEK293T for MAPPIT: it was obtained by our department in 1996 from Dr. Mark Hall at the Biochemistry

department of the University of Birmingham.

5. Yeast strains - Y8800 and Y8930: the same strain used in the many previous studies (Rolland, et al. Cell. 2014 Nov 20;159

(5):1212-1226.)

Authentication All the cell lines except HEK293T for MAPPIT were not re-authenticated.
HEK293T for MAPPIT was authenticated by analyzing single nucleotide polymorphism (Lin, et al. Nat Commun. 2014 Sep
3;5:4767.)

Mycoplasma contamination All the cell lines were tested with DNA stain for mycoplasma contamination and free of contamination.

Commonly misidentified lines  No commonly misidentified lines were used.
(See ICLAC register)
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