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Global insights into cellular organization and genome function require 
comprehensive understanding of the interactome networks that mediate genotype–
phenotype relationships1,2. Here we present a human ‘all-by-all’ reference interactome 
map of human binary protein interactions, or ‘HuRI’. With approximately 53,000 
protein–protein interactions, HuRI has approximately four times as many such 
interactions as there are high-quality curated interactions from small-scale studies. 
The integration of HuRI with genome3, transcriptome4 and proteome5 data enables 
cellular function to be studied within most physiological or pathological cellular 
contexts. We demonstrate the utility of HuRI in identifying the specific subcellular 
roles of protein–protein interactions. Inferred tissue-specific networks reveal general 
principles for the formation of cellular context-specific functions and elucidate 
potential molecular mechanisms that might underlie tissue-specific phenotypes of 
Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic 
variation to phenotypic outcomes.

The reference human genome sequence has enabled systematic study 
of genetic6 and expression4 variability at the organism6, tissue4, cell 
type7 and single-cell level8. Despite advances in sequencing genomes, 
transcriptomes and proteomes, we still understand little about the 
cellular mechanisms that mediate phenotypic and tissue or cell type 
variability. A mechanistic understanding of cellular function and 
organization emerges from studying how genes and their products, 
primarily proteins, interact with each other, forming a dynamic inter-
actome that drives biological function. Analogous to the reference 
human genome sequence9,10, a reference map of the human protein 
interactome, generated systematically and comprehensively, is needed 

to provide a scaffold for the unbiased proteome-wide study of biologi-
cal mechanisms, generally and within specific cellular contexts.

It remains infeasible to assemble a reference interactome map by sys-
tematically identifying endogenous protein–protein interactions (PPIs) 
in thousands of physiological and pathological cellular contexts11,12. 
However, systematic affinity purification of exogenously expressed bait 
proteins in immortalized-cell contexts13 as well as binary PPI detection 
assays in cell models2,14 have generated biophysical human protein 
interactome maps of demonstrated high functional relevance. Specifi-
cally, yeast two-hybrid (Y2H) represents the only binary PPI assay that 
can be operated at sufficient throughput to systematically screen the 
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human proteome for binary PPIs. Using Y2H followed by validation 
in orthogonal assays, we previously generated HI-II-14 consisting of 
approximately 14,000 PPIs involving 4,000 proteins from screening 
around 40% of the genome-by-genome search space2. In contrast to 
curated interactions from hypothesis-driven small-scale studies and 
protein complex interactome maps that favour highly expressed pro-
teins, HI-II-14 covers the proteome more uniformly and is relatively free 
from ascertainment and expression biases.

To increase interactome coverage and generate a reference map of 
human binary PPIs, we expanded the ORFeome collection to encom-
pass approximately 90% of the protein-coding genome. We screened 
this search space a total of nine times with a panel of three Y2H assay 
versions (Fig. 1a, b). The resulting PPI map quadruples the number of 
identified PPIs overall, and upon integration with genome, transcrip-
tome and proteome resources enables biological discovery across 
most cellular contexts, offering a reference map of the human binary 
protein interactome.

Generation and characterization of HuRI
The newly established human ORFeome v9.1 covers 17,408 
protein-coding genes (Extended Data Fig. 1a, b, Supplementary Tables 1, 
2), forming a search space (Space III) that encompasses over 150 mil-
lion pairwise combinations (Fig. 1a). This search space more than dou-
bles the space screened to generate HI-II-14 and represents the most 
comprehensive search space systematically screened for human PPIs. 
Limitations in sensitivity of the PPI assay can be overcome by using dif-
ferent assays15,16 or different versions of the same assay17,18. To maximize 
sensitivity we used three Y2H assay versions (Fig. 1b, Supplementary 
Tables 3, 4) that showed good sensitivity and low false-positive rates 
when benchmarked against gold-standard positive and random refer-
ence sets (PRSv1 and RRSv1, respectively)15, while detecting comple-
mentary PPI sets (Extended Data Fig. 1c, d, Supplementary Table 5). 
We assessed assay performance using a test space of approximately 
2,000-by-2,000 human genes2 (Extended Data Fig. 1e, Supplementary 
Table 6). The Y2H versions were complementary, in that three screens 
for each of the three versions doubled the number of detected PPIs and 
proteins relative to nine screens using a single version (Extended Data 
Fig. 1f, Supplementary Table 7).

To map the reference interactome, we performed nine screens of 
Space III, followed by pairwise verification by quadruplicate retesting 
and sequence confirmation. PPIs verified by two orthogonal binary 
PPI assays, MAPPIT19 and GPCA20, were recovered at rates on par with 
high-confidence binary PPIs from the literature (each having at least two 
pieces of experimental evidence, with at least one from a binary assay 
type; Lit-BM) over a large range of score thresholds (Fig. 1c, Extended 
Data Fig. 1g, h, Supplementary Table 8). Each additional screen identi-
fied new PPIs and proteins, with the largest gains obtained by switching 
assay versions (Fig. 1d, Extended Data Fig. 1i). The dataset, versioned 
HI-III-20 (Human Interactome obtained from screening Space III, pub-
lished in 2020), contains 52,569 verified PPIs involving 8,275 proteins 
(Supplementary Table 9). Although our knowledge of the interactome 
remains incomplete, we refer to HI-III-20 as a reference map of the 
human binary protein interactome (HuRI) given its systematic nature, 
extensive coverage, and scale.

Molecular mechanisms can be more readily inferred from direct than 
indirect PPIs, yet the fraction of PPIs reported in various human protein 
interactome maps that are direct remains unknown. Structures from 
protein complexes with at least three subunits21 show that, within those 
complexes, more PPIs in HuRI correspond to direct biophysical contacts 
than do PPIs from Lit-BM (90% versus 81%, P = 0.019, two-sided Fisher’s 
exact test, n = 121 and 410 for HuRI and Lit-BM, respectively) or from 
protein complex interactome maps (<50%, P < 0.001 for all tested maps, 
two-sided Fisher’s exact test, n = 584–1,211) (Fig. 1e, Supplementary 
Table 10). Combining HuRI with all previously published systematic 

screening efforts at CCSB yields 64,006 binary PPIs involving 9,094 
proteins (HI-union) (Supplementary Table 11), which is approximately 
fivefold more PPIs than the entirety of high-quality binary PPIs curated 
from the literature (Fig. 1f, Extended Data Fig. 2, Supplementary 
Tables 12–14). The union of Lit-BM and HI-union represents the most 
complete collection of high-quality direct PPI data available to date 
(http://interactome-atlas.org).

Complementarity of the three Y2H versions might stem from steric 
constraints that differ between protein fusions used in the assays. Inte-
grating HuRI with structures of PPIs21, we observed reduced sensitiv-
ity of Y2H assays where the interaction interface was close (<20 Å) to 
whichever terminus was fused to the Gal4 activation domain (Extended 
Data Fig. 3a, b, Supplementary Table 15). PPIs found in several screens 
had larger interaction interfaces (P = 0.03, two-sided permutation test, 
n = 234) and corresponded more often to direct PPIs within, rather than 
between, protein complexes (P = 3 × 10−18, two-sided Fisher’s exact test, 
n = 1,817); however, HuRI PPIs found in a single screen were observed 
to have precision as high as those found in multiple screens (Extended 
Data Figs. 3c–g, 4, Supplementary Tables 16–18, Supplementary Note 1). 
These results reinforce previous observations12,22 that the protein inter-
actome might be dominated by weaker and more transient PPIs that are 
difficult to detect, as indicated by the fact that most PPIs in HuRI were 
found in only one screen (Extended Data Fig. 3h, i). This is reflected in 
an increased estimate of the binary protein interactome size (Extended 
Data Fig. 3j), so that HuRI is estimated to represent 2–11% of the binary 
protein interactome23 (Supplementary Note 2).

Functional relationships in HuRI
On the basis of the observation that HuRI is enriched in direct PPIs, 
we also hypothesize that proteins in HuRI with similar interaction 
interfaces tend to share interaction partners. For example, retinoic 
acid receptors RXRG and RXRB (Extended Data Fig. 5a, left) share previ-
ously reported interaction partners involving binding to retinoic acid 
receptor RAR types24 and oxysterol receptors NR1 group H types25. We 
derived a profile similarity network (PSN) from HuRI (Supplementary 
Table 19), and found that the number of pairs of proteins in HuRI with 
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similar interaction profiles is higher than random (P < 0.01, one-sided 
empirical test) (Extended Data Fig. 5b) and proteins of overall higher 
sequence identity tend to exhibit higher interaction profile similari-
ties (P < 0.01, one-sided empirical test) (Extended Data Fig. 5c). We 
also found that proteins with a tendency to share interaction part-
ners often have interaction interfaces that are similar, as opposed to 
complementary, and therefore tend not to interact with one another, 
except where proteins originate from a common ancestor that could 
self-interact26 (Extended Data Fig. 5d). Indeed, for only 5% of the pro-
tein pairs found to interact in HuRI did the pair share more than 10% of 
their interaction partners. Both HuRI PPIs and the PSN are enriched for 
links between proteins of similar function (P < 0.01, one-sided empiri-
cal test) (Fig. 2a, Supplementary Table 20, Extended Data Fig. 5e, f) and 
both contain more functional modules27 than our previously published 
interactome maps2,14 (Fig. 2b, Extended Data Fig. 5g). Thus, HuRI and 
the PSN are complementary maps of functional relationships between  
proteins.

As shown above, global sequence identity between two proteins can 
be indicative of shared interaction interfaces; however, it probably fails 
to identify pairs of proteins whose shared interaction interface is small. 
Indeed, 50% (502) of all protein pairs in HuRI with interaction profile 
similarities ≥0.5 exhibit ≤20% sequence identity, so that functional 
relationships identified by the PSN are not necessarily identifiable by 
sequence identity. One such protein pair is the endoplasmic reticulum 
(ER) transmembrane protein TMEM258 and the uncharacterized pro-
tein C19ORF18, which have only 10% sequence identity but share 80% of 
their interactors (Extended Data Fig. 5a, right). TMEM258 catalyses the 
first step in N-glycosylation of proteins in the ER and might have a role 
in protein translocation across the ER28. Roles in protein transport and 
ER function have also been ascribed to two of the four shared interac-
tion partners, ARL6IP129 and IER3IP130, which suggests that C19ORF18 
and potentially the other two shared interaction partners (MFSD6 and 
AC012254.2) contribute to ER-related functions of protein maturation 
and transport.

Uncharted disease-related interactions
Unlike Lit-BM, HuRI was generated by systematically testing protein 
pairs for interaction. While Lit-BM is highly biased towards the most 
studied genes2, HuRI covers the genome-by-genome space more 
uniformly and at increased depth compared to Lit-BM and our pre-
vious screening efforts (Fig. 3a, Extended Data Fig. 5h). Notably, we 
find that the agreement between Lit-BM and HuRI is highest among 
the best-studied genes, in which Lit-BM is most complete and where 
approximately 40% of the PPIs in HuRI have been previously identi-
fied (Fig. 3b). HuRI substantially expands the number of biomedically 
interesting genes for which high-quality direct PPI data are available 
(Fig. 3c, Extended Data Fig. 5i), and finds new interaction partners for 

these genes in previously uncharted regions of the protein interactome 
(Fig. 3d, Extended Data Fig. 5j).

Essential proteins were often found to have significantly more inter-
action partners31. However, correlation between two variables does 
not necessarily indicate causality, especially where there are other 
confounding variables (Extended Data Fig. 5k). We find that protein 
popularity (measured by publication count) and endogenous expres-
sion level strongly correlate with: (i) each other; (ii) the number of inter-
action partners (‘degree’) in protein complex and literature-curated 
protein interaction networks but not in HuRI; as well as (iii) gene prop-
erties such as essentiality, age32, fitness effect33 and loss-of-function 
intolerance6 (Extended Data Fig. 5l, Supplementary Table 21). After 
correcting for popularity and expression level, we found substantially 
reduced correlations between interaction degree and other gene prop-
erties, including gene essentiality (Fig. 3e, Extended Data Fig. 5m, n). 
In line with previous observations34, this suggests that correlations 
between degree and essentiality, age, loss-of-function intolerance, 
and fitness effects are confounded by underlying expression and study 
biases, and thus may not reflect causal relationships. These results 
highlight the value of HuRI as a uniformly-mapped reference for the 
study of systems properties of genes and networks.

Compartment-specific roles of PPIs
Proteins are localized to specific compartments, carrying out functions 
that depend both on the subcellular environment and the local PPI 
network. Despite available proteome-wide datasets on the localiza-
tion of individual proteins5, experimental determination of cellular 
localization-specific PPI networks remains challenging. We find that 
proteins localizing to a diverse range of subcellular compartments are 
evenly represented in HuRI (Extended Data Fig. 6a), suggesting that 
cellular localization-specific PPI networks can be inferred for many 
different cellular compartments via integration of HuRI with available 
protein localization data.

Extracellular vesicles have been studied intensively using proteomics 
approaches35. However, our understanding of the molecular mecha-
nisms that lead to protein recruitment into extracellular vesicles and 
subsequent secretion remains limited. The subnetwork of interactions 
between extracellular vesicle proteins (Extended Data Fig. 6b) shows 
significantly higher connectivity in HuRI than in degree-controlled 
randomized networks (P < 0.001, one-sided empirical test) (Extended 
Data Fig. 6c), enabling prediction of recruiters of extracellular vesicles 
using the number of interaction partners. Seven of the top twenty-one 
most connected proteins in this extracellular vesicle network have 
established roles in extracellular vesicle biogenesis or cargo recruit-
ment36. SDCBP (syntenin-1) functions in ESCRT-dependent generation 
of extracellular vesicles, and its knockout shows reduced extracellular 
vesicle production37. SDCBP has 48 PPIs with other extracellular vesicle 
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proteins and is frequently detected in extracellular vesicles, which sug-
gests that it regulates recruitment of interacting proteins into extracel-
lular vesicles. To test this hypothesis (Fig. 4a), we knocked out SDCBP 
in the U373vIII cell line (Extended Data Fig. 6d). Of six SDCBP partners 
detected in the U373vIII extracellular vesicle proteome, three (CALM1, 
CEP55 and HPRT1) displayed significantly reduced protein levels in 
extracellular vesicles in the SDCBP-knockout line (P < 0.05, one-sided 
empirical test, depletion <0.66) (Fig. 4b). By contrast, only 15% of the 
non-interaction partners of SDCBP were reduced (P = 0.042, one-sided 
empirical test) (Extended Data Fig. 6e). Thus, SDCBP may have a role 
in the recruitment of proteins into extracellular vesicles, highlighting 
the potential value of HuRI in studying protein function within specific 
subcellular contexts.

Proteins often change subcellular localization, for example, as part 
of their maturation process or in response to external or internal signal-
ling events. These dynamics are difficult to comprehensively capture 
at proteome-scale, yet existing efforts have already revealed numerous 
proteins that localize to multiple subcellular compartments with some 
pairs of compartments exhibiting considerably more shared member-
ship (crosstalk) than others5. Despite a tendency for interactions in 
HuRI to link proteins localized to the same compartment (P < 0.01, 
one-sided empirical test) (Fig. 2a), a considerable number of interac-
tions were identified between proteins never reported to co-localize. 
To explore whether lack of co-localization of interacting proteins in 
HuRI might originate from incomplete localization data, we assessed 
whether these non-co-localized interacting proteins tend to reside in 
compartments with significant crosstalk and observed a significant 
positive correlation (P < 0.001, one-sided empirical test) (Extended 
Data Fig. 6f–h). This suggests that HuRI could prove useful in predict-
ing protein localization dynamics.

Principles of tissue-specific function
Despite recent advances in systematic genome-wide identification 
of tissue-preferentially expressed (TiP) genes4 (Extended Data Fig. 7, 
Supplementary Table 22), we lack a concrete understanding of how 
the surprisingly small set of TiP genes operate together and coordi-
nate their activity with the core ‘housekeeping’ machinery to mediate 
tissue-specific functions. Insights can be obtained from investiga-
tion of the tissue-specific network context of TiP proteins, inferred 
from integrating protein interactome data with tissue transcriptomes 
(Supplementary Table 23). However, we should not expect uniform 
coverage of TiP proteins with PPIs using experimental methods that 
demand expression of both partners within a single immortalized cell 
line or result from screening an incomplete ORFeome. Indeed, contrary 
to protein complex11–13 and literature-curated interactome maps38 as 

well as our previously published binary PPI datasets2,14, we find that TiP 
proteins are well-represented in HuRI (Fig. 5a, Extended Data Fig. 8a).

Restricting HuRI to PPIs between proteins expressed in the same 
tissue, we observe that TiP proteins engage in as many PPIs and are as 
central as more uniformly expressed proteins (Extended Data Fig. 8b), 
in contrast to previous observations using literature-curated PPI net-
works39,40. This result, paired with the fact that PPIs mediated by a TiP 
protein are effectively also tissue-specific, leads to the finding that the 
fraction of tissue-specific PPIs in the protein interactome as character-
ized by HuRI is higher than that of tissue-specific genes in the expressed 
genome, indicating that substantial information on tissue-specific 
functions can only be obtained from the interactome. The opposite 
is observed for Lit-BM, probably owing to its bias against TiP genes 
(Extended Data Fig. 8c).

To investigate the local network neighbourhoods of TiP proteins 
within their respective tissue contexts, we used HuRI to derive pro-
tein interactome maps for 35 tissues4,41, each of which contains about 
25,000 PPIs (Supplementary Table 24, Extended Data Fig. 8d). Within 
each tissue PPI network, we focused on the interactions involving at 
least one TiP protein (Fig. 5b). The TiP PPI networks show extensive 
interactions between TiP and non-TiP proteins, but with few TiP–TiP 
PPIs. Despite significant enrichments for HuRI to link proteins that work 
in the same biological process (Fig. 2a), TiP–TiP PPIs, as highlighted for 
brain in Fig. 5c, are not enriched, nor is the average shortest path among 
TiP proteins shorter than in degree-controlled randomized networks 
(P > 0.05, empirical test). Using either metric, TiP proteins were found 
to be significantly close to each other in only six of 35 tissues. In four 
of these six tissues, enrichment for network proximity was driven by 
clusters of specifically expressed keratins or late-cornified envelope 
proteins (Extended Data Fig. 8e). These results support a model in which 
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tissue-specific functions emerge through interactions between TiP 
proteins and more uniformly expressed members of the basic cellular 
machinery, presumably modulating and adapting common cellular 
processes for cellular context-specific needs42.

O n e  b i o l o g i c a l  p r o c e s s  w i t h  b o t h  c e l l - t y p e  a n d 
developmental-stage-specific homeostatic roles is apoptosis. We 
used HuRI to identify proteins with interaction partners that were 
enriched for known apoptosis regulators (Supplementary Table 25). 
Five proteins among the top ten predictions had previously demon-
strated roles in apoptosis (Supplementary Note 3). Among three TiP 

genes predicted to be implicated in apoptosis (Extended Data Fig. 8f, 
g), we further examined OTUD6A. Abundance of OTUD6A negatively 
correlated with time-of-death after addition of TRAIL (TNF-related 
apoptosis-inducing ligand; P = 0.012, two-sided, empirical test, n = 40 
cells), but not after expression of OTUD6A alone (Extended Data Fig. 8h, 
Supplementary Table 26), suggesting that OTUD6A participates in the 
apoptosis pathway but is not an inducer of cell death. This and other 
evidence (Extended Data Fig. 8f, i, Supplementary Note 3) suggests that 
OTUD6A exerts an apoptosis sensitization function via transcriptional 
activation in a haematopoietic cellular context.

Mechanisms of tissue-specific diseases
Many Mendelian diseases display tissue-specific phenotypes, rarely 
explained by tissue-specific expression of genes with disease-associated 
mutations43 (Fig. 5d, Extended Data Fig. 9a). Such mutations broadly or 
specifically affect PPIs involving the mutated protein44. Perturbations 
of PPIs between uniformly expressed disease-associated proteins and 
TiP proteins in the affected tissues have been suggested to underlie 
the tissue-specific phenotypes of those diseases43. In HuRI-derived 
tissue PPI networks, we find 130 such PPIs involving 63 distinct non-TiP 
disease-causal proteins and 94 TiP proteins. Although we see no enrich-
ment for PPIs between causal proteins and TiP proteins (Extended Data 
Fig. 9b, Supplementary Note 4), this does not rule out the possibility 
that perturbations of some of these interactions mediate tissue-specific 
phenotypes of Mendelian diseases.

To explore this hypothesis, we experimentally tested whether patho-
genic variants associated with Mendelian diseases were able to perturb 
these PPIs. Of ten causal proteins tested, seven showed perturbation of 
PPIs to preferentially expressed interaction partners in the correspond-
ing ‘disease tissues’ (Fig. 5e, Extended Data Fig. 9c, d, Supplementary 
Tables 27, 28). One example is PNKP, mutations of which have been 
associated with microcephaly, seizures and developmental delay. The 
pathogenic PNKP mutation Glu326Lys does not affect the DNA kinase or 
DNA phosphatase activity of PNKP, rendering the mechanism of patho-
genicity unclear45. We observed that Glu326Lys perturbed PPIs with two 
partners preferentially expressed in the brain, SYNGR1 and TRIM37, 
whereas a benign control mutation Pro20Ser46 did not affect any PNKP 
PPIs (Fig. 5f, Extended Data Fig. 9c, e). TRIM37 facilitates DNA repair47, 
suggesting a potential mechanism by which perturbation of this interac-
tion could affect the brain-specific DNA repair function of PNKP. In other 
examples, HuRI identified CTNNA3 and SUCLA2 to have respective TiP 
interaction partners TRIM54 and ARL6IP1 (Extended Data Fig. 10), which 
cause similar diseases with overlapping symptoms48,49, supporting the 
relevance of these interactions in the physiopathology. Overall, this study 
yields hypotheses of molecular mechanisms for otherwise unexplained 
tissue-specific phenotypes of seven Mendelian diseases (Extended Data 
Fig. 9d) and demonstrates the utility of HuRI as a reference to study 
biological mechanisms within specific disease contexts.

Discussion
Here, we present HuRI, a systematically generated human protein 
interactome map with more than 50,000 PPIs of high biophysical 
quality. Although HuRI displays highly significant overlap with known 
functional relationships, the cellular function of most individual PPIs 
remains to be determined. We show that follow-up studies on the func-
tion of proteins and PPIs can be guided by integration of HuRI with 
contextual genome, transcriptome and proteome data to infer the 
cellular context in which subnetworks of PPIs operate together to medi-
ate a function. With advances in single-cell transcriptomics8 as well as 
systematic determination of subcellular protein localization, inference 
of functional PPI subnetworks that are specific for a given cellular state 
will further increase in precision. However, a priori removal of PPIs 
from HuRI because they are not currently known to function together 
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in a physiological cellular context could discard data that can help, for 
example, to understand the functional consequences of dysregulated 
gene and protein expression causing disease.

Despite our extensive screening, many PPIs remained undetected as 
Y2H, like all characterized assays15,16,18, has limited sensitivity, detect-
ing no interactions for half of the tested proteins. This negative result 
can guide the design of future interactome mapping efforts to target 
these proteins. Owing to the limitations of Y2H, we expect HuRI to 
be depleted for PPIs that depend on post-translational processing of 
human proteins that the yeast cell is unable to catalyse or that require 
additional partners to stabilize the interaction. Screening only one 
isoform per gene also misses interaction partners specific to alternative 
spliceforms50. Accurate estimation of the total size of the interactome 
remains challenging. PPIs display a continuum of binding strength or 
stability that, along with other factors, could underlie a continuum of 
detectability, as this study suggests. Furthermore, the results obtained 
by us and others12 indicate that very stable and functionally conserved 
PPIs constitute a minority of the interactome.

Although incomplete, the uniform proteome and interactome cover-
age of HuRI enable its use as a reference for the study of most aspects 
of human cellular function. Efforts to further complete this reference 
will require development of new technologies as well as integration 
with complementary reference maps of protein complex assemblies13. 
Although multiple challenges remain to be solved for a complete 
and context-specific map of protein functions, interactions, and 
higher-level organization, HuRI provides an unbiased genome-scale 
scaffold with which to coordinate this information as it emerges.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Y2H assay development and validation of HuRI.  
a, Number of protein-coding genes in hORFeome v9.1 and GTEx (tissues), 
FANTOM (cell types) and HPA (cell lines) transcriptome projects. The number 
of genes in hORFeome v9.1 is on par with the number of genes expressed in 
three comprehensive individual transcriptome sequencing studies and 
includes 94% of the genes with robust evidence of expression in all three.  
b, Overlap between hORFeome v9.1 and intersection of transcriptomes in a.  
c, Individual and combined recovery of PRSv1 and RRSv1 pairs by Y2H assay 
versions (n = 252, 270). d, Coloured squares showing which protein pairs were 
detected in PRSv1 (left) and RRSv1 (right) by Y2H assay versions. e, Recovery 

rates of Lit-BM and PPIs from screens of a 2,000-by-2,000 gene test space per 
Y2H assay version in MAPPIT. f, Cumulative PPI count performing three screens 
with each Y2H assay version in the test space compared to nine screens with 
Y2H assay version 1. g, h, MAPPIT and GPCA recovery of Lit-BM and PPIs from 
screens of Space III when split by screen at an RRS rate of 1% (g) or across a range 
of thresholds (h). All error bars in c, e and g, are 68.3% Bayesian confidence 
interval; shaded error band in h is standard error of proportion and n = between 
101 and 395 pairs successfully tested for each category. i, Number of proteins in 
HuRI, detected with each additional screen.



Extended Data Fig. 2 | Definition of literature-curated PPI datasets.  
a, Categorization of literature-curated PPIs into distinct subsets based on the 
experimental methods in which they were detected and the number of pieces 
of experimental evidence. b–e, Results of testing the different categories of 
literature-curated pairs in Y2H (b, d) and MAPPIT (c, e) in which the pairs have 

been further divided into high-throughput (HT) and low-throughput (LT) 
subsets (b, c). There were between n = 191 and n = 471 successfully tested PPIs 
for each category. BM, binary multiple; BS, binary singleton; NB, 
non-binary. Error bars are standard error of proportion.
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Extended Data Fig. 3 | Stericity and interaction strength contribute to PPI 
detectability. a, b, Fraction of PPIs with N or C terminus <10 Å (a) or <20 Å (b) to 
PPI interface, for PPIs with known structure in and not in HuRI (n = 37–1,891 
PPIs). Error bars are standard error of proportion. The structure of UBE2D3 
bound to RNF115 illustrates an example of a PPI found only by Y2H assay version 
3 (PDB code 5ULH). c, MAPPIT recovery rates of HuRI and Lit-BM PPIs that were 
also detected in HuRI by the number of screens each pair was detected in. Error 
bars are 68.3% Bayesian confidence interval (n = 22–793 PPIs successfully 
tested in each category). d, MAPPIT recovery rates of Lit-BM PPIs that were also 
detected in HuRI, for increasing number of pieces of experimental evidence 
per PPI. Error bars are 68.3% Bayesian confidence interval (n = 24–61 PPIs 
successfully tested in each category). e, f, Distributions of interaction interface 
area (e) or number of atomic contacts (f) by the number of HuRI screens in 

which a PPI is detected, with box plots showing median, interquartile range 
(IQR), and 1.5× IQR (with outliers); n = 1,004 PPIs. g, Left, examples of 
within-complex interactions detected in HuRI (purple) and BioPlex (orange). 
Right, fraction of HuRI PPIs between proteins of protein complexes that link 
proteins of the same complex, split by PPIs found in single and multiple screens 
(dark purple). Error bars are standard error of proportion; n = 1,042 and 775 
PPIs, for single and multiple screens, respectively. h, Number of screens each 
PPI in HuRI was detected in, split by Y2H assay version. i, Number of Y2H assay 
versions each PPI in HuRI was detected in. j, Estimates of the size of the total 
binary protein interactome and the fraction covered by HuRI, right and left, 
respectively, as a function of the minimum number of publications per gene 
and the minimum number of evidence for the Lit-BM reference. Error bands are 
68.3% Bayesian confidence interval; n ≥ 170 Lit-BM PPIs.



Extended Data Fig. 4 | HuRI provides direct contact information for 
proteins in complexes. Intra-complex PPIs are shown for protein complexes 
from CORUM as found in BioPlex (orange) or HuRI (purple). HuRI PPIs are 

further distinguished into PPIs found in single (light purple) or multiple 
screens (dark purple).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Topological and functional significance of HuRI.  
a, Examples of protein pairs in HuRI with high interaction profile similarity and 
both high (left) and low (right) sequence identity. b, The number of pairs of 
proteins in HuRI and 100 random networks at increasing Jaccard similarity 
cutoffs. Box plots are as in Extended Data Fig. 3e. c, Enrichment over random 
networks of the sum of Jaccard similarities of pairs of proteins in HuRI at 
increasing thresholds of sequence identity. Error bars are 95% confidence 
intervals, centre is relative to mean of random networks. d, Fraction of PSN 
edges that are also PPIs in HuRI, split by the PPIs involving no, one or two 
self-interacting proteins (SIPs), at increasing Jaccard similarity cutoffs. Error 
bars are standard error of proportion. e, f, Enrichment over random networks 
of the PPI count (left) or sum of Jaccard similarities (right) of HuRI PPIs or PSN 
pairs, respectively, at increasing co-expression (e) and co-fitness (f) cutoffs. 

Error bars are 95% confidence interval, centre is relative to mean of random 
networks. g, Functional modules in HuRI (top) and its PSN (bottom) with 
functional annotations. h, Heat maps of PPI counts, ordered by number of 
publications, for our previous human interactome maps and Lit-BM i, Fraction 
of genes with at least one PPI for biomedically interesting genes. j, Heat maps of 
HuRI and Lit-BM PPI counts between proteins, ordered by number of 
publications, restricted to PPIs involving genes from the corresponding gene 
set. k, Schematic of relation between variables: observed PPI degree, 
abundance, number of publications, and lethality. l, Correlation matrices. PPI 
datasets refer to their network degree. m, Degree distribution of various PPI 
networks. n, Empirical determination of significance of correlation between 
various network degrees and gene properties. HuRI-2s, subset of HuRI found in 
at least two screens. n = 13,441–53,704 PPIs per network.
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Extended Data Fig. 6 | Co-localization of proteins interacting in HuRI.  
a, Odds ratios of proteins in different subcellular compartments and PPI 
datasets. n = 125–3,941 proteins per compartment, two-tailed Fisher’s exact 
test. b, The subnetwork of HuRI involving extracellular vesicle proteins. Names 
of high-degree proteins are shown. c, Number of PPIs in HuRI between 
extracellular vesicle proteins (purple arrow) compared to the distribution from 
randomized networks (grey). d, Western blots of SDCBP (left) and ACTB 
(loading control, right) in wild-type and three knockout (KO) cell lines (#7–#9), 
repeated twice in two independent laboratories. Full scanned image was 
displayed, obtained by ChemiDoc MP imager (Bio-Rad). Cell line #8 was used 
for extracellular vesicle proteomics. e, Fraction of proteins in which abundance 
in extracellular vesicles was significantly reduced in the SDCBP-knockout cell 

line, split by proteins interacting and not interacting with SDCBP as identified 
in HuRI. Error bars are standard error of proportion (n = 6 interactors, 638 
non-interactors, *P = 0.042, one-tailed empirical test). f, Schematic illustrating 
that the number of HuRI PPIs between proteins from two different 
compartments should correlate with the enrichment of both compartment 
pairs to overlap, if co-localization annotation is incomplete. g, Scatter plot 
showing, for each pair of subcellular compartments, odds ratios quantifying 
the enrichment for proteins located in both compartments versus the 
enrichment of the density of PPIs between proteins located to either 
compartment. Size of points is scaled by the standard error of the x axis 
variable. Regression line and 95% confidence interval are shown. h, The z-score 
of the regression slope of g compared to those of random networks.



Extended Data Fig. 7 | Investigation of tissue-preferential expression data. 
a, Examples of genes displaying different levels of TiP gene expression across 
the GTEx tissue panel (left). Box plots are as in Extended Data Fig. 3e. n = 90–
779 samples per tissue. Equation to calculate tissue-preferential expression for 
every gene–tissue pair and the maximum TiP value for every gene (middle). 
Number of genes showing tissue-preferential expression for increasing 
tissue-preferential expression cutoffs (right). b, Relative number of TiP genes 

for every tissue for increasing tissue-preferential expression cutoffs. c, d, 
Differences in number of TiP genes after removal of testis before TiP value 
calculation per tissue (TiP value cutoff = 2) (c) and in total for increasing 
tissue-preferential expression cutoffs (d). e, Number of TiP genes and number 
of TiP genes that are also exclusively expressed in one tissue (for increasing 
tissue-preferential expression cutoffs. sglTis, single tissue.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | PPIs between TiP proteins and uniformly expressed 
proteins likely adapt basic cellular processes to mediate cellular 
context-specific functions. a, TiP protein coverage by CCSB PPI networks for 
increasing levels of tissue-preferential expression. Shaded error bars are 
proportional to standard error of proportion, n ≥ 233 genes. b, Spearman 
correlation coefficients and 95% confidence intervals for correlations between 
degree or betweenness and tissue specificity for HuRI and Lit-BM (n = 6,684 
and 4,971 proteins). c, Fraction of HuRI and Lit-BM that involve TiP proteins 
compared to fraction of genome that are TiP genes for increasing levels of 
tissue-preferential expression. d, Number of PPIs in HuRI, involving proteins in 
GTEx, in which both proteins are expressed in the same tissue, and the mean of 
the tissue-specific subnetworks. Error bar denotes s.d. e, Test for enrichment 
of TiP–TiP PPIs (left) and significance of average shortest path between TiP 

proteins (middle) in each tissue subnetwork, number of TiP proteins in each 
subnetwork, interacting with other TiP proteins, being part of keratin (KRT) or 
late-cornified envelope (LCE) protein family (right). f, g, Transcript expression 
levels across the BLUEPRINT haematopoietic cell lineage (f) and GTEx tissue 
panel (g) for three candidate genes predicted to function in apoptosis. 
EG, oesophagus gastroesophageal. h, Histogram of number of untransfected 
cells and their time of death (left) without (top) and with (bottom) addition of 
TRAIL. Time of death of cells expressing OTUD6A–GFP fusions versus OTUD6A 
expression measured as fluorescence (right) without (top) and with (bottom) 
addition of TRAIL. i, Apoptosis-related network context of OTUD6A and 
C6ORF222 in HuRI, unfiltered (left) and filtered using colon transverse or 
mature eosinophil transcript levels (right).
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Extended Data Fig. 9 | Potential mechanisms of tissue-specific diseases.  
a, Histogram of the number of Mendelian diseases showing symptoms in 
several tissues. b, Test for enrichment of causal proteins associated with 
tissue-specific Mendelian diseases to interact with TiP proteins of affected 
tissues. c, Network neighbourhood of uniformly expressed causal proteins of 
tissue-specific diseases found to interact with TiP proteins in HuRI, indicating 

PPI perturbation by mutations. d, Causal genes split by mutation found to 
perturb PPI to TiP protein (dashed) or not (solid). e, Expression profile of PNKP 
and interactors in brain tissues and PPI perturbation pattern of disease causing 
(Glu326Lys) and benign (Pro20Ser) mutation. Yeast growth phenotypes on 
SC-Leu-Trp (top) or SC-Leu-Trp-His+3AT media (bottom) are shown; green or 
grey protein symbols denote preferentially or not expressed, respectively.



Extended Data Fig. 10 | Mutations in uniformly expressed causal proteins 
associated with tissue-specific Mendelian diseases perturb interactions to 
TiP proteins. Expression profile and interaction perturbation profile of nine 
causal proteins and their interaction partners. Top, affected tissues were 
selected for display. Middle, control of activation domain and Gal4 
DNA-binding domain plasmid presence and cell density by spotting yeast 

colonies on SC-Leu-Trp media. Bottom, detection of PPIs by spotting yeast on 
SC-Leu-Trp-His+3AT media, in which yeast growth indicates PPIs. Red 
letters denote causal proteins; grey protein symbols denote interaction 
partners not expressed in affected tissues; black and grey alleles 
denote pathogenic and not pathogenic, respectively; green protein 
symbols denote TiP interaction partners in affected tissues.
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